Для регулирования давления с приводом

Содержание
  1. Принцип работы регулятора давления
  2. Устройство и принцип работы регулятора давления
  3. Устройство регулятора давления
  4. Как работает регулятор давления?
  5. Как регулятор поддерживает давление на постоянном уровне
  6. Трехлинейный регулятор давления
  7. Бытовые и коммерческие регуляторы давления в газопроводах
  8. Газовый редуктор с регулятором давления
  9. Статические и астатические регуляторы
  10. Изодромный регулятор газа
  11. Особенности конструкции
  12. Работа регулятора на разных режимах
  13. Регулирование гидропривода
  14. Объемное регулирование
  15. Регулирование рабочего объема насоса
  16. Регулирование рабочего объема гидромотора
  17. Преимущества объемного регулирования
  18. Недостатки объемного регулирования
  19. Дроссельное регулирование
  20. Последовательное регулирование с установкой дросселя в линии нагнетания
  21. Последовательное регулирование с установкой дросселя в линии слива
  22. Параллельное дроссельное регулирование скорости гидропривода
  23. Достоинства дроссельного регулирования гидравлического привода
  24. Недостатки дроссельного регулирования
  25. Частотное регулирование скорости гидропривода

Принцип работы регулятора давления

Устройство и принцип работы регулятора давления

Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.

Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.

Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction — сокращение, уменьшение, снижение).

Устройство регулятора давления

Принципиальная схема регулятора давления показана на рисунке.

В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.

Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.

Читайте также:  Чери тиго замена переднего привода

Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.

Как работает регулятор давления?

В исходом состоянии газ поступает на вход клапана, протекает в зазоре между седлом и клапаном и поступает на выход. Величина зазора определяется степенью поджатия пружины, которое изменяется с помощью регулировочного винта. Получается, что давление на выходе зависит от давления на входе и величины зазора между клапаном 7 и седлом 5.

В случае, если давление на выходе вырастет, то под его воздействием мембрана переместится и сожмет пружину, которая, в свою очередь, переместит клапан 7, проходное сечение уменьшится. Потери давления на нем возрастут, что вызовет падение давление в отводимой линии до величины настройки.

Если давление на выходе регулятора упадет ниже установленной величины, давление с которым газ воздействует на мембрану уменьшится, в результате снизится поджатие пружины 1. Клапан 7 переместится и увеличит проходное сечение. Потери на нем снизятся, что вызовет рост давления в отводимой линии до величины настройки.

Как регулятор поддерживает давление на постоянном уровне

Получается, что величина давления в отводимой линии поддерживается на постоянном уровне, за счет изменения величины потерь на регуляторе. Регулятор настраивается с помощью регулировочного винта, который изменяет поджатие пружины 1, управляющее воздействие на клапан через мембрану оказывает давление газа из отводимой линии.

Давление на выходе регулятора определяется как разность между давлением на входе и величиной потерь давления на клапане.

Трехлинейный регулятор давления

Регулятор имеющий помимо входного и выходного каналов еще и дополнительный — для сброса воздуха при критическом повышении давления называют трехлинейным.

Конструкция этого регулятора отличается от конструкции двухлинейного наличием отверстия в мембране, которое открывается в случае если давление превысит критическую величину. В обычных условиях регулятор работает также как и двухлиненый.

Если давление на выходе возрастает до значения, достаточного чтобы переместить мембрану в крайнее верхнее положение и открыть канал сброса. Газ через этот канал отправляется в атмосферу. Давление в отводимой линии снижается до тех, пока усилия пружины не будет достаточно чтобы закрыть канал сброса.

Так как сброс избыточного давления осуществляется в атмосферу, трехлинейные регуляторы представленной конструкции используют для регулирования давления воздуха.

Таким образом, принцип действия регулятора давления газа, схож в принципом действия гидравлического редукционного клапана, показанном на видео.

Бытовые и коммерческие регуляторы давления в газопроводах

Конструкционное, функциональное и эргономическое исполнение запорной арматуры в итоге сводится к требованиям конкретной сферы применения. Акцент делается на непосредственных рабочих параметрах, среди которых выходное давление, диапазоны замеров, объемы расхода и др. Так, газовые регуляторы давления для бытовых сетей, как правило, характеризуются низкой пропускной способностью и скромным спектром возможностей для настройки. С другой стороны, в такой арматуре делается ориентировка на безопасность и удобство эксплуатации. На практике бытовые регуляторы используются в системах газоснабжения котлов, плит, горелок и прочей домашней техники.

Промышленное и коммерческое применение накладывает более высокие требования на средства контроля газовых сред. Устройства этого типа отличаются расширенными диапазонами показателей выходного и входного давлений, точностью настроек, более высокой пропускной способностью и наличием дополнительных функций. Подобные модели используются газовыми службами, контролирующими снабжение объектов социального назначения, общепита, промышленности, инженерного хозяйства и т. д. Уже отмечалось, что существуют разные регуляторы с точки зрения сложности конструкционного исполнения. Но это не значит, что в промышленном секторе, например, применяются только лишь многофункциональные комбинированные устройства. Простейшие средства управления могут быть полезными на предприятиях благодаря высокой надежности и ремонтопригодности.

Газовый редуктор с регулятором давления

Редуктор представляет собой автономное устройство, предназначенное для контроля давления газовой смеси на выходе из какой-либо емкости или трубопровода. Основная классификация в данном случае предполагает разделение регулирующих узлов по принципу действия. В частности, различаются обратные и прямые устройства. Редуктор с обратным действием работает на понижение давления по мере выхода газа. Конструкция таких устройств включает клапаны, камеры для буферного содержания смеси, регулировочный винт и фурнитурные приспособления. Прямое действие означает, что регулятор будет работать на повышение давления при выпуске газа.

Также различают модели редукторов по типу обслуживаемого газа, количеству ступеней редуцирования и месту использования. Например, существуют регуляторы давления газа для баллонов, трубопроводных сетей и рамп (горелок). В случае с баллонами тип газа определит и способ подключения устройства. Практически все модели редукторов, кроме ацетиленовых, соединяются с баллонами посредством накидных гаек. Устройства, работающие с ацетиленом, обычно фиксируются к емкости хомутами с упорным винтом. Предусматриваются и внешние отличия между редукторами – это может быть маркировка по цвету и указанием информации о рабочей смеси.

Статические и астатические регуляторы

В статических системах характер регуляции нестабилен в местах прямого механического сопряжения с рабочей средой и запорной арматурой. В целях повышения устойчивости такого регулятора вводится дополнительная обратная связь, выравнивающая значения давления. Причем надо отметить, что фактическая величина давления в данном случае будет отличаться от нормативной до момента, пока не восстановится номинальная нагрузка на чувствительный элемент.

Традиционное исполнение статического регулятора давления газа предусматривает наличие собственного стабилизирующего устройства в виде пружины – для сравнения, в других версиях используется компенсирующий груз. В процессе рабочего момента сила, которую развивает пружина, должна соответствовать степени ее же деформации. Наибольшая степень сжатия обретается в ситуациях, когда мембрана полностью закрывает регулирующий канал.

Астатические регуляторы при любых нагрузках самостоятельно приводят показатель давления к нужной величине. Также восстанавливается и положение органа регуляции. Впрочем, у исполнительной механики, как правило, не бывает четкой позиции – в разные моменты регуляции он может находиться в любой позиции. Астатические регулирующие устройства чаще используют в сетях с высокой способностью к самовыравниванию рабочих показателей.

Изодромный регулятор газа

Если статическую систему контроля давления можно охарактеризовать как модель с жесткой обратной связью, то изодромные устройства взаимодействуют с упругими элементами восстановления характеристик. Изначально в момент фиксации отклонения от заданной величины регулятор займет позицию, которая соответствует значению, пропорциональному показателю отхождения от нормы. Если же давление не нормализуется, газовая арматура будет смещаться в сторону компенсации до тех пор, пока показатели не придут в норму.

С точки зрения характера эксплуатации изодромный регулятор можно назвать средним устройством между астатическими и статическими моделями. Но в любом случае отмечается высокая степень независимости данной регулирующей механики. Существует и разновидность изодромной арматуры с предварением. Данное устройство отличается тем, что скорость смещения исполнительного органа изначально превышает темпы изменения давления. То есть техника работает на опережение, экономя время на восстановление параметра. В то же время регуляторы с предварением затрачивают больше энергии от внешнего источника.

Особенности конструкции

Регулятор давления бензина – один из немногих элементов системы, который не управляется с электронного блока. Этот узел – полностью механический и его функционирование основано на перепадах давления. Хотя в системах без рециркуляции срабатыванием датчика заведует ЭБУ. Поскольку встречаются они не часто, то далее рассматривать такие узлы мы не будем.

Стоит отметить, что РТД работает не в строго заданных значениях, он подстраивается под режим работы двигателя. То есть, при надобности он увеличивает или уменьшает давление в системе, чтобы обеспечить оптимальное смесеобразование.

Конструктивно этот элемент очень прост и состоит из корпуса, на котором расположены штуцеры и выводы для подсоединения к системе питания. Внутри этот корпус разделен мембраной на две камеры – топливную и вакуумную.

К топливной полости подходят для вывода – один используется для подачи топлива в камеру, а второй ведет на магистраль слива бензина в бак (обратку). Но второй канал закрыт клапаном, который связан с мембраной.

Со стороны вакуумной полости установлена пружина, которая воздействует на мембрану, обеспечивая перекрытие канала слива клапаном. Эта камера посредством штуцера трубкой соединена с впускным коллектором.

Работа регулятора на разных режимах

Если рассмотреть упрощенно принцип действия, то он достаточно прост. Насос закачивает топливо в рампу, из которой оно попадает также и в топливную камеру регулятора. Как только сила давления превысит жесткость пружины, мембрана начинает перемещаться в сторону вакуумной полости, увлекая за собой клапан. В результате канал слива открывается и часть бензина стекает в бак, при этом давление в рампе падает. Из-за этого пружина возвращает клапан с мембраной на место, и обратный канал закрывается.

Но как уже упоминалось, РДТ подстраивается под режим работы мотора. И делает это он за счет разрежения во впускном коллекторе. Чем больше будет это разрежение, тем сильнее будет его воздействие на мембрану. По сути, создаваемый вакуум создает противодействующее усилие пружине.

На деле все выглядит так: для работы мотора на холостом ходу увеличение количества топлива не нужно, поэтому и не требуется и повышенного давления.

На этом режиме работы дроссельная заслонка закрыта, поэтому во впускном коллекторе воздуха недостаточно и создается разрежение. А поскольку вакуумная камера связана с коллектором патрубком, то вакуум создается и в ней. Под воздействием разрежения мембрана давит на пружину, поэтому для открытия клапана нужно меньше давления бензина.

При нагрузке же, когда дроссельная заслонка открыта, разрежения практически нет, из-за чего мембрана не участвует в создании усилия на пружину, поэтому давления требуется больше. Таким образом этот элемент функционирует в системе питания в зависимости от режима работы мотора.

Источник

Регулирование гидропривода

Скорость движения исполнительных органов объемного гидропривода зависит от расхода жидкости, поступающего в рабочую камеру, и от объема этой камеры, поэтому возможности регулирования скорости гидроприрвода основаны на различных способах изменения расхода, либо на изменении объема рабочей камеры. Рассмотрим подробнее каждый из возможных способов регулирования скорости движения исполнительных механизмов гидравлического привода.

Объемное регулирование

Данный способ регулирования основан на изменении объема рабочих камер гидромашин — насосов и гидромоторов.

Регулирование рабочего объема насоса

Подачу объемного насоса можно вычислить по формуле:

Q = q × n × η

    где
  • q — объем рабочей камеры насоса
  • n — частота вращения вала насоса
  • η — объемный КПД

Получается, что изменения объем рабочей камеры насоса, можно регулировать расход жидкости, подаваемой в напорный трубопровод при постоянной частоте вращения.

Насосы, конструкция которых позволяет изменять объем рабочей камеры называют регулируемыми. Наибольшее распространение получили регулируемые пластинчатые и аксиально-поршневые насосы.

Конструкция регулируемых машин значительно сложнее чем нерегулируемых, а значит регулируемые насосы значительно дороже. Высокая стоимость является одним из главных недостатков объемного регулирования гидропривода.

Объемное регулирование насоса часто применяется для изменения скорости движения гидроцилиндров.

Регулирование рабочего объема гидромотора

Скорость вращения вала гидромотора можно вычислить, используя зависимость:

Используя данную зависимость можно сделать вывод, что изменяя объем рабочей камеры гидромотора можно регулировать скорость вращения вала.

Регулируемым называют гидромотор, в конструкции которого предусмотрена возможность изменения объема рабочей камеры. Наиболее часто используются регулируемые аксиально-поршневые моторы, существуют конструкции регулируемых пластинчатых и радиально-поршневых гидромоторов.

На риунке показан регулируемый аксиально-поршневой насос, изменение узла наклона блока, в данном случае, осуществляется с помоью механической передачи. При изменении угла наклона меняется величина хода поршней, а значит и подача насоса, чем меньше уогл — тем меньше ход.

Достаточно часто используется схема объемного регулирования с одновременным использованием регулируемых насоса и гидромотора. Наибоольшее распространение получили регулируемые аксиально-поршневые моторы.

Преимущества объемного регулирования

Недостатки объемного регулирования

Дроссельное регулирование

Суть дроссельного регулирования заключаются в отводе части жидкости, подаваемой насосом. Подача насоса при дроссельном регулировании делится на два потока.

Qн = Qгд + Qсл

  • где Qгд — расход, подводимый к гидродвигателям
  • Qсл — расход отправляемый на слива

Изменяя соотношение этих расходов можно менять скорость движения исполнительных механизмов.

В зависимости от схемы установки регулируемого гидравлического сопротивления — дросселя, различают три типовых схемы дроссельного регулирования гидропривода:

  • Последовательное
    • в линии нагнетания
    • в линии слива
  • Параллельное

Рассмотрим подробнее каждый из этих способов регулирования.

Последовательное регулирование с установкой дросселя в линии нагнетания

Дроссель или регулятор расхода при данном способе регулирования устанавливается в линию нагнетания насоса, он необходим для создания необходимого перепада давления. Сброс части жидкости осуществляется через предохранительный клапан.

Рассмотрим принцип работы схемы с последовательным дроссельным регулированием.

При полном открытии дросселя весь поток жидкости направляется к гидроцилиндру, скорость его движения при переключении распределителя будет максимальной.

При уменьшении проходного сечения дросселя давление перед ним будет увеличиваться. При достижении давления начала открытия предохранительного клапана, часть жидкость через него будет отправляться на слив. Скорость перемещения штока гидроцилиндра будет уменьшаться.

При дальнейшем закрытии дросселя давление перед ним будет расти, а значит предохранительный клапан будет открываться сильнее отправляя большее количество жидкости на слив. Что позволит уменьшать скорость движения штока цилиндра.

Данный способ регулирования характеризуется простотой реализации и относительной дешевизной органов регулирования. Однако дросселирование обуславливает большие потери энергии, а значит низкий КПД и большое тепловыделение. Причем при последовательном регулировании, нагретая на дросселе жидкость будет поступать в полость исполнительного гидродвигателя.

Последовательное регулирование с установкой дросселя в линии слива

Дроссель может устанавливаться не только в линии нагнетания насоса, но и в линии слива гидродвигателя, такую схему называют последовательным регулированием гидравлического привода с установкой дросселя в линии слива.

В результате уменьшения проходного сечения дросселя давление в линии нагнетания будет возрастать, когда оно достигнет величины достаточной для открытия предохранительного клапана часть жидкости через него будет отправлена на слив. Получается что при дроссельном регулировании гидродвигатель постоянно будет находится под нагрузкой за счет противодавления на сливе, что может негативно сказаться на его ресурсе.

При установке дросселя в линии слива нагретая на гидравлическом сопротивлении жидкость поступает не к гидродвигателю, как в случае с установкой дросселя в линию нагнетания, а в накопительный бак, где накопленное тепло рассеивается.

Параллельное дроссельное регулирование скорости гидропривода

Схема параллельного регулирования с помощью дросселя показана на рисунке.

Дроссель установлен параллельно гидроцилиндру. При увеличении открытия дросселя поток жидкости, проходящий через него на слив будет увеличиваться, а поток жидкости направляемый к гидродвигателю будет уменьшаться. Изменяя открытие дросселя можно регулировать соотношение расходов этих потоков. Выделяемое при дросселировании тепло с помощью жидкости отводится в бак.

Достоинства дроссельного регулирования гидравлического привода

Недостатки дроссельного регулирования

Частотное регулирование скорости гидропривода

В том случае, если для вращения вала насоса используется электродвигатель, для изменения подачи можно применить частотное регулирование.

Подача насоса определяется его рабочим объемом и частотой вращения вала, изменяя частоту можно влиять на подачу насоса.

Для регулирования частоты вращения вала электродвигателя, а значит и насоса, используется специальный регулятор частоты. Он позволяет изменять скорость вращения вала электродвигателя в широком диапазоне. При увеличении частоты вращения подача насоса будет расти, при уменьшении — снижаться.

Диапазон регулирования ограничен возможностями частотного регулятора, и величиной рабочего диапазона частот вращения насоса, например радиально-поршневые насосы устойчиво работают в диапазоне 1000 — 3000 об/мин.

Источник

Оцените статью
Авто Сервис