Меню

Элемент тормозной системы вагонов предназначенный для дистанционного управления тормозами

Тормозное оборудование, виды тормозов и принцип действия

Внутренне оборудование

Внутренне оборудование любого пассажирского вагона подразделяется на несъемное и съемное, и независимо от планировки вагона предназначено для удобного размещения пассажиров и багажа в вагоне, создания необходимых условий для работы проводников. Несъемное оборудование — постоянно находится на вагоне, к нему относится мебель, столики, газетные сетки, ступеньки и т.д., которые постоянно укреплены на своем месте в вагоне. Съемное оборудование — все перечисленное по описи вагона ФИУ-11, по накладной выдачи в рейс постельных принадлежностей ФИУ-20, т.е. то, что переносится проводником или экипировщиками. Все внутреннее оборудование всегда должно быть исправным, чистым и готовым к использованию. Контроль за его исправностью и комплектностью возложен на проводника.

Двери всех вагонов подразделяются на: наружные (боковые тамбурные и переходные), внутренние. В вагонах нового модельного ряда ТВЗ применяются электро — пневматические механические боковые тамбурные двери. При движении вагона наружные двери должны быть закрыты, боковые тамбурные двери в тамбуре с тормозной стороны на замок под специальный ключ и секретку, в тамбуре с нетормозного конца вагона — на замок под специальный и трехгранный ключи и секретку. Боковые тамбурные двери в рабочем тамбуре должны открываться только после полной остановки поезда.

Окна в вагонах бывают: опускные, глухие, с термопакетами, аварийные. Окна рекомендуется открывать только на станции, а при движении — со стороны, свободной от встречного поезда при скорости движения не более 120 км/ч.

Тормозами называют устройства, предназначенные для получения регулируемых дополнительных сил сопротивления движению подвижного состава или удержания его на месте. Тормоза подвижного состава железных дорог подразделяются на фрикционные и электрические.

Наибольшее распространение получили в подвижном составе железных дорог фрикционные тормоза, принцип действия которых основан на создании искусственного сопротивления движению поезда за счет сил трения, возникающих между колесами и прижимающимися к ним тормозными колодками.

По способу управления и источнику энергии для прижатия тормозных колодок фрикционные тормоза подразделяются на пневматические , электропневматические и ручные .

Основным видом фрикционного тормоза, применяющегося на подвижном составе железных дорог, является пневматический, принцип действия которого основан на создании разности давлений сжатого воздуха в камерах приборов управления тормозами. Пневматические тормоза подразделяются на неавтоматические прямодействующие, автоматические непрямодействующие и автоматические прямодействующие.

Неавтоматические прямодействующие тормоза применяются в качестве вспомогательных для торможения только локомотивов при выполнении ими маневровой работы . Торможение основано на подаче сжатого воздуха непосредственно в тормозной цилиндр. Для отпуска тормозов тормозной цилиндр сообщают с атмосферой.

Весь подвижной состав железных дорог оборудован автоматическими тормозами.

Автоматическими непрямодействующими тормозами оборудованы локомотивы и вагоны , предназначенные для перевозки пассажиров .

Автоматическими прямодействующими тормозами оборудованы локомотивы и вагоны грузового парка железных дорог.

Оборудование пневматических тормозов подвижного состава состоит из ряда устройств. Источником сжатого воздуха служит компрессор, установленный на локомотиве. Компрессор, сжимающий воздух до давления 0,75-0,9 МПа на электровозах , 0,75-0,85 МПа на тепловозах и 0,65-0,8 МПа в моторном подвижном составе, нагнетает его в систему главных резервуаров, где воздух аккумулируем и охлаждается. Из главных резервуаров сжатый воздух поступает в тормозную магистраль через кран машиниста , который в пассажирских поездах поддерживает зарядное давление 0,5-0,52 Мпа.

Магистральный воздухопровод тормозной системы между локомотивом и вагоном и между вагонами состава соединяется гибкими (резиновыми) рукавами, снабженными соединительными головками. Приборы торможения (воздухораспределители, запасные резервуары, тормозные цилиндры), присоединенные к воздушной магистрали, и тормозные рычажные передачи смонтированы на каждом локомотиве и вагоне.

Автоматический непрямодействующий тормоз заряжают перед отправлением поезда, устанавливая ручку 3 крана машиниста в положение отпуска. При этом воздух, проходя по тормозной магистрали 5 через воздухораспределитель8, заполняет запасный резервуар 7 до зарядного давления. Одновременно с этим воздухораспределитель соединяет тормозной цилиндр с атмосферой. Под действием пружин тормозного цилиндра его поршень, перемещаясь в исходное положение через рычажную передачу10, отводит тормозные колодки 11 от колес.

Для того чтобы привести тормоза в действие, нужно установить ручку крана машиниста в тормозное положение. Сжатый воздух выбрасывается из магистрали в атмосферу через кран машиниста, давление в ней снижается, воздухораспределитель разъединяет тормозной цилиндр с атмосферой, соединяя его с запасным резервуаром. При этом поршень тормозного цилиндра, сжимая возвратную пружину, действует на рычажную передачу. Тормозные колодки прижимаются к колесам.

При торможении тормозная магистраль отсоединяется от главного резервуара, и процесс торможения происходит за счет воздуха из запасных резервуаров, поэтомутормоз называетсянепрямодействующим.

При разрыве воздушной магистрали поезда или открытии в вагоне поезда стоп-крана происходит выпуск воздуха из магистрали и начинается торможение так же, как при управляемом выпуске воздуха из магистрали через кран машиниста, поэтому тормозназывается автоматическим.

Схема автоматического непрямодействующего тормоза в положении зарядки
и отпуска тормоза:

1 ¾ компрессор локомотива,

2 ¾ главный резервуар;

3 ¾ ручка крана машиниста;

4 ¾ кран машиниста;

5 ¾ тормозная магистраль;

6 ¾ соединительные междувагонные рукава;

7 ¾ запасный резервуар;

8 ¾ воздухораспределитель;

9 ¾ тормозной цилиндр,

10 ¾ рычаги и тяги тормоза;

11 ¾ тормозная колодка;

Ат ¾ атмосферный канал

Электропневматическими тормозами оборудованы пассажирские локомотивы и вагоны , электро — и дизель-поезда .

Читайте также:  Прокачать тормоза ниссан авенир

Электропневматический тормоз (ЭПТ) кроме пневматического оборудования имеет устройства, управляемые с помощью электрического тока.

Схема электропневматического тормоза:

1 ¾ источник электрического тока;

2 ¾ контроллер ручки крана машиниста;

3 ¾ блок управления;

4 ¾ электромагнитный привод клапана перекрыши;

5 ¾ то же, клапана торможения;

6 ¾ запасный резервуар;

7 ¾ воздухораспределитель;

8 ¾ тормозной цилиндр;

9 ¾ тормозная магистраль;

10 ¾ переключательный клапан;

Ат ¾ выпуск воздуха в атмосферу

К источнику электрического тока 1 и блоку управления 3, установленным на локомотиве, подключен контроллер крана машиниста 2. Линейными проводами он соединен с электровоздухораспределителями вагонов поезда . При тормозном положении ручки крана машиниста его контроллер соединяет цепь питания электромагнитного клапана торможения 5, который открывает доступ воздуха из запасного резервуара 6 в тормозной цилиндр 8. Электромагнитный клапан перекрыши при этом разобщает тормозной цилиндр с атмосферой. Происходит торможение поезда.

При зарядке тормозов воздух из главного воздушного резервуара поступает через воздушную магистраль 9 и воздухораспределитель в запасные резервуары. При поездном положении ручки крана машиниста ток к электромагнитным клапанам не поступает.

При разъединении тормозной магистрали и отсутствии электрического тока в цепи электромагнитных клапанов тормоз работает как пневматический, для чего имеется переключательный клапан 10. Электропневматические тормоза действуют одновременно по всей длине поезда, обеспечивают плавность торможения и сокращают время подготовки тормозов к действию.

Электрическое торможение основано на возможности перевода тяговых электродвигателей в режим электрических генераторов , которые кинетическую энергию движущегося поезда превращают в электрическую. Создаваемый ими при этом вращающий момент стремится задержать вращение связанных с двигателями колесных пар , чем и достигается эффект торможения.

Электрическое торможение применяется для подтормаживания и изменения скорости движения поездов на уклонах, а также для снижения скорости перед предстоящей остановкой.

При электрическом торможении фрикционные тормоза не работают, устраняется возможность нагрева тормозных колодок и бандажей колесных пар и исключается их износ.

Различают три вида электрического торможения:

· рекуперативное ¾ электрическая энергия, вырабатываемая тяговым двигателем локомотива, работающим в режиме генератора, возвращается обратно в электросеть. Применяется в электровозах постоянного тока. Меньшее распространение рекуперативное торможение получило на электровозах переменного тока;

· реостатное торможение ¾ электрическая энергия поглощается реостатами и превращается в тепловую. Применяется на тепловозах и отдельных типах электровозов и моторвагонного подвижного состава ;

· рекуперативно — реостатное ¾ когда на высокой скорости движения используется рекуперативное торможение, а при более низкой ¾ реостатное. Такая система применена на электропоездах ЭР22, ЭР2Р, ЭР2Т и др.

Ручные тормоза являются резервными средствами торможения в случае отказа автоматических тормозов в пути следования, а также используются для закрепления подвижного состава на путях станций . Такими тормозами оборудованы локомотивы, моторвагонный подвижной состав, пассажирские и частично грузовые вагоны .

Привод ручного тормоза присоединен к рычажной тормозной передаче автоматического тормоза. На грузовых вагонах он размещен на переходных площадках, а на вагонах, не имеющих переходных площадок, стояночный тормоз расположен сбоку вагона.

Источник

Элемент тормозной системы вагонов предназначенный для дистанционного управления тормозами

ПРОЕКТЫ ГРУППЫ КОМПАНИЙ
«Регионального Центра Инновационных Технологий»
Тормозная система подвижного состава РЖД.

Для остановки поезда при движении его на прямом горизонтальном участке пути достаточно просто выключить тяговые двигатели локомотива (перевести гидропередачу в режим холостого хода), и через определенный промежуток времени поезд остановится благодаря естественным силам сопротивления движению поезда. Однако, в этом случае, за счет силы инерции поезд пройдет значительное расстояние, прежде чем остановиться. Для сокращения этого расстояния необходимо искусственно увеличить силы сопротивления движению поезда.
Устройства, применяемые в поездах для искусственного увеличения сил сопротивления движению, называются тормозными устройствами (тормозами), а силы, создающие искусственное сопротивление, — тормозными силами.
Тормозные силы и силы сопротивления движению гасят кинетическую энергию движущегося поезда. Наиболее распространенным средством для получения тормозных сил является колодочный тормоз, при котором торможение осуществляется прижатием колодок к вращающимся колесам, благодаря чему возникают силы трения между колодкой и колесом. При трении колодок о колеса происходит разрушение мельчайших выступов поверхности, а также молекулярное взаимодействие микронеровностей контактирующих поверхностей. Трение тормозных колодок можно рассматривать как процесс превращения механической работы сил трения в тепло.

На подвижном составе железных дорог применяется пять типов тормозов : стояночные (ручные), пневматические, электропневматические, электрические и электромагнитные.
1. Стояночными тормозами оборудованы локомотивы, пассажирские вагоны и примерно 10% грузовых вагонов.
2. Пневматическими тормозами оснащен весь подвижной состав железных дорог с использованием сжатого воздуха давлением до 9 кгс/см 2 на локомотивах и 5—6,5 кгс/см 2 на вагонах.
3. Электропневматическими тормозами (ЭПТ) оборудованы пассажирские локомотивы и вагоны, электро- и дизель-поезда.
4. Стояночные , пневматические и электропневматические тормоза относятся к разряду фрикционных тормозов, у которых сила трения создается непосредственно на поверхности колеса, либо на специальных дисках, жестко связанных с колесными парами
5. Электрическими тормозами , которые часто называют динамическими, или реверсивными, вследствие перевода тяговых двигателей в режим электрических генераторов, оборудованы отдельные серии электровозов, тепловозов и электропоездов.
Электрические тормоза бывают:
5.1. Рекуперативными — вырабатываемая тяговыми двигателями энергия отдается обратно в сеть,
5.2. Реостатными — вырабатываемая тяговыми двигателями энергия гасится на тормозных резисторах и
5.3. Рекуперативно-реостатными — при высоких скоростях используется рекуперативный тормоз, а при низких реостатный.

Читайте также:  Рычаг тормоза переднего диск ttr250 k250
Тип тормозов Максимальная скорость
(км/ч)
Длина торм.пути на площадке при макс.скорости движения (м) Коэфф. эффективности
тормозов*
1. Пассажирский подвижной состав
(кроме моторвагонного)
1.1. Пневматический с чугунными колодками 120-160 1000-1600 8,3-10,0
1.2. Электропневматический с композиционными колодками 160 1300 8,1
1.3. Пневматический с чугунными колодками совместно с магнитно-рельсовым 150 460 3,1
1.4. Электропневматический дисковый с композиционными колодками и магнитно-рельсовый 200 1600 8,0
2. Грузовой подвижной состав
2.1. Пневматический с чугунными колодками 80 800 10,0
2.2. Пневматический с композиционными колодками 100 800 8,0
2.3. Электропневматический с композиционными колодками 100-120 750-1000 7,5-8,3
3. Моторвагонный подвижной состав
3.1. Электропневматический с чугунными колодками 130 1000 7,7
3.2. Электропневматический с композиционными колодками 130 800 6,1
3.3. Электропневматический дисковый с композиционными накладками и магнитно-рельсовый 200 1500 7,5

* Величина тормозного пути (м), приходящаяся на 1км/ч максимальной скорости поезда.

ХАРАКТЕРИСТИКА ТОРМОЗОВ ПОДВИЖНОГО СОСТАВА

ПНЕВМАТИЧЕСКИЕ ТОРМОЗА
Пневматические тормоза имеют однопроводную магистраль (воздухопровод), проложенную вдоль каждого локомотива и вагона для дистанционного управления воздухораспределителями с целью зарядки запасных резервуаров, наполнения тормозных цилиндров сжатым воздухом при торможении и сообщения их с атмосферой при отпуске.
Применяемые на подвижном составе пневматические тормоза разделяются на автоматические и неавтоматические, а также на пассажирские (с быстрыми тормозными процессами) и грузовые (с замедленными процессами).
1. Автоматическими называются такие тормоза, в которых при разрыве тормозной магистрали или открытии стоп-крана любого вагона происходит торможение. Автоматические тормоза приходят в действие (срабатывают на торможение) вследствие снижения давления в магистрали, а при повышении давления в магистрали производят отпуск тормозов.
2. Неавтоматическими называются такие тормоза, в которых при разрыве тормозной магистрали происходит отпуск. Неавтоматические тормоза приходят в действие (срабатывают на торможение) при повышении давления в трубопроводе, а при выпуске воздуха из трубопровода производят отпуск.

Работа автоматических тормозов разделяется на следующие три процесса:
1. Зарядка — воздухопровод (магистраль) и запасные резервуары под каждой единицей подвижного состава заполняются сжатым воздухом;
2. Торможение — производится снижение давления воздуха в магистрали вагона или всего поезда для приведения в действие воздухораспределителей, и воздух из запасных резервуаров поступает в тормозные цилиндры; последние приводят в действие рычажную тормозную передачу, которая прижимает колодки к колесам;
3. Отпуск — давление в магистрали повышается, вследствие чего воздухораспределители выпускают воздух из тормозных цилиндров в атмосферу, одновременно производят подзарядку запасных резервуаров, сообщая их с тормозной магистралью.

Различают автоматические тормоза следующих типов:
1. Мягкие с равнинным режимом отпуска — работают при разных величинах зарядного давления в магистрали; при медленном темпе снижения давления (до 0,3—0,5 в мин) в действие не приходят . (не затормаживают), а после торможения при повышении давления в магистрали на 0,1—0,3 дают полный отпуск (ступенчатого отпуска не имеют);
2. Полужесткие с горным режимом отпуска — обладают теми же свойствами, что и мягкие, но для полного отпуска необходимо восстановление давления в магистрали на 0,1—0,2 ниже зарядного (имеют ступенчатый отпуск);
3. Жесткие — работающие на определенном зарядном давлении в магистрали; при снижении давления в магистрали ниже зарядного любым темпом производят затормаживание. При давлении в магистрали вне зарядного тормоза жесткого типа не приходят в действие пока давление не станет ниже зарядного. Отпуск жестких тормозов происходит при восстановлении давления в магистрали на 0,1-0,2 выше зарядного. Тормоза жесткого типа применяются на участках Закавказской дороги с уклонами круче 45 градусов.

Электропневматические тормоза.
Электропневматическими называются пневматические тормоза, управляемые при помощи электрического тока.
Электропневматический тормоз прямодействующего типа с разрядкой и без разрядки тормозной магистрали, применяется на пассажирских, электро- и дизель-поездах. В этом тормозе наполнение цилиндров при торможении и выпуск воздуха из них при отпуске осуществляются независимо от изменения давления в магистрали, т. е. аналогично прямодействующему пневматическому тормозу.
Электропневматический тормоз автоматического типа с питательной и тормозной магистралями и с разрядкой тормозной магистрали при торможении применяется на некоторых дорогах Западной Европы и США.
В этих тормозах торможение осуществляется путем разрядки тормозной магистрали каждого вагона через электровентили в атмосферу, а отпуск — сообщением ее через другие электровентили с дополнительной питательной магистралью. Процессами наполнения и опоражнения тормозного цилиндра управляет обычный воздухораспределитель, как и при автоматическом пневматическом тормозе.

Классификация тормозного оборудования.

Тормозное оборудование подвижного состава разделяется на :
1. П невматическое, приборы которого работают под давлением сжатого воздуха, и
2. М еханическое (тормозная рычажная передача).
Пневматическое тормозное оборудование по своему назначению делится на следующие группы:
1. П риборы питания тормоза сжатым воздухом;
2. П риборы управления тормозами;
3. П риборы, осуществляющие торможение;
4. В оздухопровод и арматура тормоза.

Читайте также:  Ручной тормоз мерседес 124

1. К приборам питания тормозов сжатым воздухом относятся:
1.1. Компрессоры;
1.2. Предохранительные клапана;
1.3. Регуляторы давления;
1.4. Маслоотделители;
1.5. Главные резервуары;
1.6. Воздухоохладители.

2. К приборам управления тормозами относятся:
2.1. Краны машиниста;
2.2. Краны вспомогательного тормоза;
2.3. Устройства блокировки тормоза;
2.4. Краны двойной тяги;
2.5. Клапаны автостопа;
2.6. Сигнализаторы отпуска;
2.7. Датчики контроля состояния тормозной магистрали;
2.8. Манометры.

3. В группу приборов осуществляющих торможение входят:
3.1. Воздухораспределители;
3.2. Авторежимы;
3.3. Запасные резервуары;
3.4. Тормозные цилиндры.

4. К воздухопроводу и арматуре относятся:
4.1. Трубопроводы магистралей;
4.2. Краны;
4.3. Соединительные рукава;
4.4. Масло и влагоотделители;
4.5. Фильтры и пылеловки.

При оборудовании подвижного состава электропневматическими тормозами к приборам питания добавляется источник электрической энергии (статический преобразователь, аккумуляторные батареи, электрические цепи управления и контроля и др.), а к приборам управления — контроллер, блок управления и др. Соответственно добавляется и арматура: ура: клеммные коробки, соединительные рукава с электроконтактом, сигнальные лампы и др.
Отдельные серии локомотивов (ЧС2, ЧС4, ЧС2Т, ЧС4Т) и вагоны (РТ200, габарита РИЦ и др.) дополнительно оборудованы приборами скоростного регулирования и приборами противоюзного устройства.
В связи с постоянным совершенствованием в процессе эксплуатации тормозного оборудования его схемы для одной и той же серии могут иметь свои особенности. Принципиальное отличие схем тормозного оборудования локомотивов и вагонов заключается в том, что на локомотивах применяются все приборы тормозного оборудования (питания, управления, торможения и др.), а на вагонах — только приборы, осуществляющие торможение. Тормозное оборудование грузовых вагонов.
Тормозное оборудование грузовых вагонов может быть выполнено как с авторежимом, так и без него.
Двухкамерный резервуар 7 прикреплен к раме вагона и соединен с пылеловкой, запасным резервуаром 4 объемом 78 л и тормозным цилиндром 10 через авторежим 2 усл. № 265-002. К резервуару 5 прикреплены магистральная 6 и главная 8 части воздухораспределителя.

Разобщительный кран 5 усл. № 372 служит для включения и выключения воздухораспределителя. На магистральной трубе расположены концевые краны 3 и соединительные рукава. Стоп-кран 1 со снятой ручкой ставят только на вагонах с тормозной площадкой. В схему тормозного оборудования может быть не включен авторежим.
При зарядке и отпуске тормоза сжатый воздух из тормозной магистрали поступает в двухкамерный резервуар 5. Происходит зарядка золотниковой и рабочей камер, расположенных в резервуаре 5, и запасного резервуара 4. Тормозной цилиндр 10 сообщен с атмосферой через авторежим 9 и главную часть 8.
При понижении давления в магистрали воздухораспределитель сообщает запасный резервуар 4 с тормозным цилиндром 10, и давление в нем устанавливается пропорционально загрузке вагона: на порожнем вагоне 1,4— 1,8 кгс/см 2 , на среднем режиме 2,8—3,3 кгс/см2 и на полностью загруженном вагоне 3,9—4,5 кгс/см 2 .
Рефрижераторный подвижной состав имеет тормозное оборудование также по аналогичной схеме без авторежима.

Приборы питания тормозов сжатым воздухом

Применяемые на подвижном составе железных дорог компрессоры разделяют:
1. По числу цилиндров:
1.1. Одноцилиндровые,
1.2. Двухцилиндровые,
1.3. Трехцилиндровые;
2. По расположению цилиндров:
2.1. Горизонтальные,
2.2. Вертикальные,
2.3. W-образные,
2.4. V-образные;
3. По числу ступеней сжатия:
3.1. Одноступенчатые,
3.2. Двухступенчатые;
4. По типу привода:
4.1. С приводом от электродвигателя,
4.2. С приводом от дизеля.

Компрессор Тип компрессора Применение
Э-400 Двухцилиндровый горизонтальный одноступенчатый СР, СР3, ЭР1 до №68.
Э-500 Двухцилиндровый горизонтальный двухступенчатый с промежуточным охлаждением ВЛ19, ВЛ22м, ВЛ23, ВЛ60 в/и, ТГМ1. На ВЛ23 заменяются на КТ6Эл.
КТ6 Трехцилиндровый вертикальный двухступенчатый с промежуточным охлаждением ТЭМ1, ТЭМ2, ТЭП60, ТЭ3, ТЭ7, 2ТЭП60.
КТ7 Трехцилиндровый вертикальный двухступенчатый с промежуточным охлаждением ТЭ10, ТЭП10, М62 2ТЭ10, 2ТЭ10Л, 2ТЭ10В, 2ТЭ10М, 2ТЭ116, 2ТЭ21
КТ6Эл Трехцилиндровый вертикальный двухступенчатый с промежуточным охлаждением ВЛ8, ВЛ10, ВЛ60 в/и, ВЛ80 в/и, ВЛ82, ВЛ82м, ВЛ11, ВЛ15, ВЛ85, 2ТЭ116, 2ТЭ116УП,
ПК-35 Двухцилиндровый, двухступенчатый с промежуточным охлаждением. .
ПК-5,25 Шестицилиндровый, двухступенчатый с промежуточным охлаждением. ТЭМ7, ТЭП70, ТЭП80, ТГМ6А.
ПК-3,5 Четырехцилиндровый, двухступенчатый с промежуточным охлаждением. ТГ16,
ПК-1,75 Двухцилиндровый, двухступенчатый с промежуточным охлаждением. ТГМ1
ВП3-4/9 Двухцилиндровый двухступенчтаый с дифференциальными поршнями с расположением цилиндров под углом 90град ТГМ3, ТГ102 с №56 — по 2 компрессора, ДР.
ВВ 1,5/9 Одноцилиндровый двухступенчатый с дифференциальным поршнем ТГ102 до №55, ДР1, ДР1А, ДР1П.
ВВ 0,7/8 Одноцилиндровый двухступенчатый с дифференциальным поршнем ТГМ3, ТГК2, ТУ5, ТУ7, ТУ4.
ЭК-7Б Двухцилиндровый горизонтальный одноступенчатый с электродвигателем постоянного тока ЭР2, ЭР1 с №69, ЭР22.
ЭК-7В Двухцилиндровый горизонтальный одноступенчатый с электродвигателем переменного тока ЭР9П, ЭР2Р, ЭР2Т, ЭР22, ЭР22М, ЭТ2, ЭД2Т, ЭД4, ЭД9Т, ЭР200.
МК-135 Трехцилиндровый вертикальный двухступенчатый с промежуточным охлаждением ВМЭ, Д, Д1.
К-1
«Ковапол»
Двухцилиндровый с дифференциальными поршнями ЧС1, ЧС3, ЧС4 до №88, ЧМЭ2 до №210.
К-2 Трехцилиндровый вертикальный двухступенчатый ЧС2, ЧС2Т, ЧС4, ЧС4Т, ЧС6, ЧС200,
ЧС4 с №89, ЧМЭ3, ЧМЭ2 с №211.

Источник

Adblock
detector