Меню

Как рассчитать кинематический расчет привода

Как рассчитать кинематический расчет привода

ПРАКТИЧЕСКАЯ РАБОТА № 1 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА

Цель работы:

1. Изучить последовательность выполнения кинематического расчета привода.

2. Ознакомиться с примером кинематического расчета привода.

3. Выполнить кинематический расчет привода для индивидуального задания.

Порядок выполнения кинематического расчета привода. Проектирование машины любого типа начинается с расчета привода, который начинают с выбора двигателя по потребной мощности, кинематической схеме привода и условиям эксплуатации, указанным в задании на разработку машины. Требуемую мощность двигателя определяют на основании исходных данных – рабочих характеристик машины.

Если указана мощность () на выходном валу привода, то расчетная мощность на входном валу привода определяется по зависимости:

, (1)

где — коэффициент полезного действия (КПД) привода, который равный произведению частных КПД элементов привода

, (2)

где — КПД отдельных звеньев кинематической цепи привода, ориентировочные значения, которых приведены в таблице 1.1.

С учетом расчетной мощности на входном валу привода определяется мощность двигателя привода из условия .

Если на выходном валу указаны вращающий момент () и его угловая скорость (), то мощность привода

. (3)

Если на выходном валу указаны тяговое усилие ()и его скорость (), то мощность на входном валу привода

. (4)

Таблица 1.1. Средние значения коэффициентов полезного действия элементов привода

с цилиндрическими колесами

с цилиндрическими колесами

Закрытая червячная при числе

В большинстве стационарных машин в качестве двигателя принимается трехфазный асинхронный электродвигатель, характерной особенностью которого является синхронная частота вращения, которая в зависимости от числа пар полюсов может быть 3000;1500;1000;750;600; 500 об/мин. Для обеспечения заданной скорости на выходном валу привода его передаточное отношение

(5)

Передаточное отношение привода равно произведению передаточных отношений всех передач привода:

, (6)

где — передаточное отношение отдельных передач кинематической цепи привода.

Передаточные отношения для различных видов механических передач приведены в таблице 1.2.

Таблица 1.2. Средние значения передаточных отношений механических передач

с цилиндрическими колесами

с четырехзаходным червяком

При кинематическом расчете привода принята нумерация валов начиная от вала приводного двигателя. Для каждого вала определяется мощность, момент и его угловая скорость (частота вращения) с учетом КПД передач и их передаточного отношения.

Мощность на том валу привода

. (7)

Угловая скорость на том валу привода

. (8)

Момент том валу привода

. (9)

2. Пример расчета. Определить мощность привода ленточного транспортера, представленного на рис. 1.1. Рассчитать мощность, момент и угловую скорость на каждом валу привода.

Исходные данные. Тяговое усилие на ленте 10 кН, скорость движения ленты . 1 м/с. Электродвигатель с синхронной частотой вращения 1500 об/мин. Диаметр приводного барабана транспортера 800 мм. Передаточные отношения ременной, зубчатой и цепной передач: 3,45; 5,6;3,25.

Рис.1.1. Кинематическая схема привода: 1 – двигатель, 2 – клиноременная передача, 3 – закрытая зубчатая передача, 4 – цепная передача, 5 – барабан ленточного конвейера.

1. Принимаем КПД элементов привода по таблице 1.1:

0,97 — КПД ременной передачи,

0,97 – КПД зубчатой передачи,

0,92 – КПД цепной передачи,

0,99 –КПД пары опорных подшипников.

2. Общий КПД привода по формуле (2):

0,84.

3. Частота вращения приводного барабана:

23,9 об/мин.

4. Передаточное отношение привода по формуле (5):

62,8.

Проверка передаточного отношения для заданных передаточных отношений передач по формуле (6)

62,8.

5. Расчетная мощность на валу двигателя привода определяется по формуле (1)

11900 Вт = 11,9 кВт.

6. Угловые скорости, мощности и крутящие моменты на валах привода:

I вал – вал двигателя:

157 1/с,

кВт,

.

II вал – входной вал редуктора:

45,5 1/с,

11,4 кВт,

III вал – выходной вал редуктора:

8,1 1/с,

10,9 кВт,

IV вал – вал барабана:

2,5 1/с,

10 кВт,

.

Проверка тягового усилия на ленте конвейера:

н = 10 кН.

3. Индивидуальные задания для выполнения кинематического расчета привода.

Индивидуальные задания по практической работе выполняются для кинематической схемы, представленной на рис.1.1. с исходными данными приведенными в таблицах 1.3,1.4.

Необходимо определить мощность привода ленточного транспортера, представленного на рис. 1.1. Рассчитать мощность, момент и угловую скорость на каждом валу привода.

Таблица 1.3. Исходные данные для кинематической схемы рис.1.1.

Мощность на выходном валу привода, кВт

Синхронная частота вращения двигателя, об/мин

Источник

Курсовая работа: Кинематический расчет привода

Содержание

1. Описание конструкции проектируемого привода

2. Кинематический расчет привода

2.1 Выбор электродвигателя привода

2.2 Назначение передаточных чисел

2.3 Расчет нагрузочных и кинематических характеристик

3.1 Расчет зубчатой передачи

3.2 Расчет поликлинового ремня

4. Расчет и построение эпюр

5. Расчет валов на выносливость

5.1 Проверка на усталостную прочность быстроходного вала

5.2 Проверка на усталостную прочность тихоходного вала

6. Проверка подшипников качения на долговечность

6.1 Расчет долговечности подшипников 7207 быстроходного вала

6.2 Расчет долговечности подшипников 7209 тихоходного вала

7. Расчет элементов корпуса редуктора

8. Определение элементов зубчатых колес, шкивов

9. Подбор шпонок и проверочный расчет шпоночных соединений на прочность

10. Назначение посадок сопряжений деталей привода

11. Описание способа смазки передач и подшипников привода

11.1 Смазывание зубчатого зацепления

11.2 Смазывание подшипников

12. Описание порядка сборки редуктора привода

1. Описание конструкции проектируемого привода

Привод является неотъемлемой частью любой машины. Приводное устройство, разработанное в проекте, включает электродвигатель, вращение от которого посредством ременной передачи передаётся на редуктор и далее через муфту на другие устройства.

Из существующих типов электродвигателей выбирают преимущественно асинхронные электродвигатели трехфазного тока серии 4А.

Муфты используются для соединения концов валов или для соединения валов с расположенными на них деталями. Основное назначение муфт – передача вращающего момента без изменения его модуля и направления. Муфты могут выполнять другие функции: предохранять механизм от перегрузок, компенсировать несносность валов, разъединять или соединять валы во время работы.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата. Назначение редуктора – передача вращения от вала двигателя к валу рабочей машины, понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Редуктор проектируют либо для привода отдельной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Спроектированный в настоящем курсовом проекте редуктор:

Режим нагрузки – постоянный. Долговечность привода – 10000 часов. Редуктор с нижним расположением шестерни и горизонтальным расположением ременной передачи.

Соответствует условиям технического задания.

2. Кинематический расчет привода

2.1 Выбор электродвигателя привода

Общий коэффициент полезного действия (КПД) привода:

где – КПД муфты, = 0,98;

– КПД пары подшипников качения, = 0,99;

– КПД зубчатой передачи, = 0,97;

– КПД клиноременной передачи, = 0,93;

= 0,98·0,99 2 ·0,97·0,93 = 0,86

Расчетная требуемая мощность двигателя:

Рт.р. = Рз /

где Рз –мощность электродвигателя, Рз =2 кВт;

Определяем требуемое число оборотов двигателя:

,

где — число оборотов двигателя, — передаточное число редуктора, =4, — передаточное ременной передачи, =3, подбираем по таблице 5.5 приложения [1];

об/мин;

По данным таблицы 5.1 приложения [1] принимаем

электродвигатель 4А112МВ8У3, у которого:

— мощность двигателя, 3 кВт,

— синхронная частота вращения, 750 об/мин,

По формуле 5.7 приложения [1] определяем частоту вращения у нагруженного ротора:

2.2 Назначение передаточных чисел

По формуле 5.1 приложения [1] определим общее передаточное число двигателя:

Уточняем передаточное число цепной передачи:

передаточное число редуктора равно, =4,

передаточное число ременной передачи, u.ц.п. = 3;

Расчет нагрузочных и кинематических характеристик

Силовые (мощность и вращающий момент) и кинематические (частота вращения и угловая скорость) параметры привода рассчитывают на валах из требуемой (расчетной) мощности двигателя и его номинальной частоты вращения при установившемся режиме.

Рассмотрим силовые и кинематические характеристики для каждого элемента привода

2.3 Расчет нагрузочных и кинематических характеристик

Ротор электродвигателя:

Р21 **=2.33*0.93*0.99=2.15 кВт;

Р32 **=2.15*0.99*0.97=2.06 кВт;

Р43 *=2.06*0.98=2 кВт;

3.1 Расчет зубчатой передачи

Выбор материала, вида термообработки и определение допускаемых напряжений зубчатых колес

В настоящее время основным материалом для изготовления зубчатых колес является сталь. В условиях индивидуального и мелкосерийного производства, предусмотренного техническими заданиями на курсовое проектирование, применяются колеса с твердостью материала не более 350 НВ. При этом обеспечивается чистовое нарезание зубьев после термообработки, высокая точность изготовления и хорошая прирабатываемость зубьев.

Для равномерного изнашивания зубьев и лучшей их прирабатываемости твердость шестерни НВ1 назначают больше твердости колеса НВ2 .

В зубчатых передачах марки сталей шестерни и колеса выбираем одинаковые. Для передачи, с косыми зубьями выбираем сталь марки 40ХН, с улучшенной термообработкой, с твердостью: для колеса – НВ 250, для шестерни – НВ 295 [3].

Допускаемые контактные напряжения, МПа:

,

где – предел контактной выносливости при базовом числе циклов, по табл. 3.2 [1]

МПа;

МПа;

– коэффициент долговечности, для длительной эксплуатации

=,

NHE 1 =60*n2 *t=60*240.75*10 4 =144.5*10 6 – для шестерни;

==0.89 – для шестерни;

==0.98 – для колеса;

– коэффициент безопасности, примем =1,1.

МПа;

МПа;

Общее допускаемое контактное напряжение равно:

МПа;

Проектный расчет зубчатой передачи. Межосевое расстояние определяем по формуле 9.39[1], мм.:

;

где ; ; ;

148 мм;

По таблице 9.2[1] уточняем 160 мм;

Определяем модуль по таблице 9.1[1]:

mn =(0.01…0.02)*= 0.02 * 160 = 3.2

Определяем ширину колеса и шестерни:

мм – для колеса;

мм – для шестерни;

Определяем общее число зубьев, шестерни и колеса:

Zсум =2**cos(β)/ mn =2*160*cos(8 0 )/3=105;

Уточняем фактическое передаточное число:

cos(β)=( Z1 + Z2 )* mn /2*=(105*3)/2*160=0.99375;

Определяем диаметры колеса и шестерни по формуле 9.6[1]:

d1 = mn * Z1 / cos(β)=3*21/0.99375=64 мм – для шестерни;

d2 = mn * Z2 / cos(β)= 3*84/0.99375=256 мм – для колеса;

Проверим межосевое расстояние стр.146[1]:

=( d1 +d2 )/2=(64+256)/2=159.5 мм;

Определим диаметры выступов и впадин шестерни и колеса по формуле 9.3[1]:

Определим силы в зацеплении:

Определение скорости и степени скорости по таблице 9.9[1]:

м/с;

м/с;

Проверочный расчет по формуле 9.42[1]:

;

275

1.88*cos(β)=1.88*cos(8 0 )=1.74;

;

Коэффициенты , , определяем по таблицам соответственно 9.12[1], 9.10[1], 9.13[1]:

=1.11;

=1.026;

=1.25;

МПа;

Δ=

Расчет зубьев при изгибе по формуле 9.44[1]:

;

zυ1 =z1 /cos 3 (β)=21/ cos 3 (8 0 )=21.62;

Тогда по таблице 9.10[1] YF 1 и YF 2 соответственно равны:

Допускаемое напряжение определяем по формуле 9.14[1]:

;

Пределы изгибной выносливости определяем по таблице 9.8[1]:

HB;

HB;

, , определяем по [1] стр.152

=1;

=1.5;

=1.8;

МПа;

МПа;

Определим по колесу или по шестерне будем вести расчет:

Расчет ведем по меньшей из величин

так как меньше то расчет ведем по шестерне, тогда

;

;

;

;

;

;

МПа;

;

3.2 Расчёт цепной передачи

Выбираем цепь приводную роликовую однорядную ПР (по ГОСТу 13568-75) и определяем шаг цепи , мм:

;

где Т1 – вращающий момент на ведущей звёздочке, Hм;

– число зубьев той же звездочки;

– допускаемое давление, приходящееся на единицу проекции опорной поверхности шарнира, =26 H/мм 2 ;

– коэффициент, учитывающий условия монтажа и эксплуатации цепной передачи;

Предварительно вычисляем величины, входящие в формулу

где , , , , , .

;

— число зубьев ведущей звёздочки

Согласно [2], скорости 0,86 м/с соответствует допускаемое давление принимаем равным 26 Н/мм. V – число рядов цепи принимаем равным 1;

мм

мм.

Определяем число зубьев ведомой звёздочки:

.

Определяем фактическое передаточное число и проверяем его отклонение от заданного:

Определяем оптимальное межосевое расстояние а, мм :

— стандартный шаг цепи.

Тогда, межосевое расстояние в шагах:

Определяем число зубьев цепи :

Уточняем межосевое расстояние в шагах:

Определяем фактическое расстояние, мм:

Монтажное межосевое расстояние, мм:

Определяем длину цепи , мм:

Определяем диаметр звёздочек, мм:

– диаметр делительной окружности, мм:

– ведомой звёздочки:

– диаметр окружности выступов:

где – коэффициент высоты зуба, = 0.7; – коэффициент числа зубьев ведущей и ведомой звездочек;

– геометрическая характеристика зацепления:

Диаметр окружности впадин, мм.:

Проверочный расчёт

Проверяем частоту вращения меньшей звёздочки , :

Проверим число ударов цепи о зубья звёздочек , :

Определяем фактическую скорость цепи , :

Определяем окружную силу, передаваемую цепью, Н.:

Проверяем давление в шарнирах цепи, Н/мм 2 :

где – площадь проекции опорной поверхности шарнира, =181.54 мм 2 ;

Допускаемое давление в шарнирах цепи уточняем в соответствии с фактической скоростью цепи [2]: =27 Н/мм 2 .

а) нормальные напряжения изменяются по симметричному циклу , при котором амплитуда напряжений равна расчетным напряжениям изгиба , МПа:

,

где М– суммарный изгибающий момент в рассматриваемом сечении вала ,Н∙мм; W–осевой момент сопротивления сечения вала , W=4287,5мм 2 ;

,

б) касательные напряжения изменяются по от нулевому циклу , при котором амплитуда цикла равна половине расчетных напряжений кручения , МПа :

где –крутящий момент, Н∙м; Полярный момент инерции сопротивления сечения вала, Wρ =8575 мм 2 ;

Определяем коэффициент концентрации нормальных и касательных напряжений для расчетного сечения вала по формулам приложения [2], с.259:

;

где и – эффективные коэффициенты концентраций напряжений, / =3,5 , /=2,5; – коэффициент влияния шероховатости , =1; – коэффициент влияния абсолютных размеров поперечного сечения ;

в) Определяем пределы выносливости в расчетном сечении валa по формулам приложения [2], с.259, Н/мм 2 :

где– и =0,58– пределы выносливости гладких образцов при симметричном цикле изгиба и кручения , Н/мм 2 ;

; ;

г) определяем коэффициенты запаса прочности по нормальным и касательным напряжениям :

д) определяем общий коэффициент запаса прочности в опасном сечении:

5.2 Проверка на усталостную прочность тихоходного вала

Определяем напряжения в опасных сечениях вала , Н/мм 2 :

а) нормальные напряжения изменяются по симметричному циклу , при котором амплитуда напряжений равна расчетным напряжениям изгиба , МПа:

,

где М– суммарный изгибающий момент в рассматриваемом сечении вала, Н∙мм; W–осевой момент сопротивления сечения вала, W= 9112,5мм 2 ;

,

б) касательные напряжения изменяются по от нулевому циклу , при котором амплитуда цикла равна половине расчетных напряжений кручения , МПа :

где –крутящий момент , Н∙м; полярный момент инерции сопротивления сечения вала, Wρ = 18225 мм 2 ;

Определяем коэффициент концентрации нормальных и касательных напряжений для расчетного сечения вала :

;

где и – эффективные коэффициенты концентраций напряжений, / =3,5 , /=2,5 ;– коэффициент влияния шероховатости, =1; – коэффициент влияния абсолютных размеров поперечного сечения;

в) Определяем пределы выносливости в расчетном сечении валa, Н/мм 2 :

где– и =0,58 – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, Н/мм 2 ;

; ;

г) определяем коэффициенты запаса прочности по нормальным и касательным напряжениям :

д) определяем общий коэффициент запаса прочности в опасном сечении:

6. Проверка подшипников качения на долговечность

Проверочный расчет предварительно выбранных подшипников выполняется отдельно для быстроходного и тихоходного вала. Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности , Н., с базовой величиной , Н., или базовой долговечности , ч., с требуемой , ч., по условиям:

Требуемая долговечность подшипника предусмотрена ГОСТ 16162– 93 и составляет для зубчатых колес ≥ 10000ч.

Расчетная динамическая грузоподъемность , Н , и базовая долговечность , ч , определяются по формулам приложения [2], с. 128 :

где – эквивалентная динамическая нагрузка, Н; m – показатель степени, m = 3,33; n – частота вращения соответствующего вала, об/мин.

6.1 Расчет долговечности подшипников 7207 быстроходного вала

Fa = 393 H; e = 0,37, =3602 H , =503 Н,

= 1,2 , = 1 ,= 1 , = 51 c -1 , Y=1,62, X=0,4, Cr=36200 H;

Проверим пригодность подшипников 7207 быстроходного вала конического редуктора, работающего с умеренными толчками и вибрационной нагрузкой.

Определяем осевые составляющие радиальных нагрузок:

Н

Н

По таблице 9.6 приложения [2], с. 136 определяем осевые нагрузки подшипников. Так как >то ==1146 Н;

Н;

По соотношению и выбираем соответствующую формулы для определения :

=1· 3602·1,2=4322,4 Н;

H;

Определяем динамическую грузоподъемность по большей эквивалентной нагрузке :

Н;

Такое соотношение расчетной и базовой динамических грузоподъемностей (22618 -1 ,Y=1,45, X=0,4, Cr=36200 H;

Проверим пригодность подшипников 7209 быстроходного вала конического редуктора, работающего с умеренными толчками и вибрационной нагрузкой.

Определяем осевые составляющие радиальных нагрузок:

Н;

Н;

По таблице 9.6 приложения [2], с. 136 определяем осевые нагрузки подшипников. Так как >то == 2854 Н;

Н;

По соотношению и выбираем соответствующую формулы для определения :

= 1· 8096·1,2 = 9715,2 Н;

= 1· 5555·1,2 = 6666 H;

Определяем динамическую грузоподъемность по большей эквивалентной нагрузке :

Н;

Такое соотношение расчетной и базовой динамических грузоподъемностей (22440 о С; в ведомый вал закладывают шпонку и напрессовывают зубчатое колесо до упора в бурт вала, затем надевают распорное кольцо и устанавливают подшипники, предварительно нагретые в масле.

Ведущий вал-шестерня устанавливается в корпус через отверстие под подшипник.

Для нормальной работы подшипников следует обеспечить легкое и свободное вращение подвижных элементов подшипников и в тоже время отсутствие излишне больших зазоров. Это обеспечивается с помощью регулировки подшипников, для чего применяют наборы тонких металлических прокладок, устанавливаемых под фланцы крышек подшипников.

Собранные валы укладывают в корпус редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.

После этого на ведомый вал надевают распорное кольцо, в

подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников с комплектом металлических прокладок для регулировки.

Перед постановкой сквозных крышек устанавливают манжеты, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников и закрепляют крышки винтами.

Далее на конец ведомого вала в шпоночную канавку, устанавливают муфту и закрепляют ее торцовым креплением.

Устанавливают маслоуказатель, заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытаниям, устанавливаемые техническими условиями.

1. А.В. Кузьмин, И.М. Чернин, Б.С. Козинцов. Расчеты деталей машин /Справочное пособие/. – Минск: Высшая школа, 1986 г.

2. Шейнблит А.Е. Курсовое проектирование деталей машин. – М.: Высшая школа, 1991 г.

3. Курсовое проектирование деталей машин / Чернявский С.А. и др./ – М.: Машиностроение, 1987 г.

4. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин. М.: Высшая школа, 1984 г.

5. Кузьмин А.В. Расчеты деталей машин /Справочное пособие/. – Мн.: Высшая школа, 1986 г.

6. Прикладная механика /под. ред. проф. Скойбеды А.Т./ – Мн.: Высшая школа, 1997 г.

7. Дунаев П.Ф. Конструирование узлов и деталей машин. М.: Высшая школа, 1978 г.

Источник

Читайте также:  Zl180 блок управления двумя приводами распашных ворот 24v
Adblock
detector
Название: Кинематический расчет привода
Раздел: Промышленность, производство
Тип: курсовая работа Добавлен 13:21:11 10 декабря 2010 Похожие работы
Просмотров: 1472 Комментариев: 22 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать