Кинематическая схема привода рис

Кинематическая схема привода рис

Непосредственное представление о механических связях даёт кинематическая схема электропривода (рис. 2.2):

Рис. 2.2. Кинематическая схема электропривода

Здесь двигатель Д через соединительную муфту СМ1, клиноременную передачу (КРП), ряд зубчатых передач ЗПi и соединительную муфту СМ2 приводит во вращение барабан (Б), преобразующий вращательное движение в поступательное движение ряда связанных масс. При нагружении элементы системы (валы, опоры, клиноременные передачи, зубчатые зацепления и т.п.) деформируются, т. к. механические связи не являются абсолютно жёсткими. При изменении нагрузки массы имеют возможность взаимного перемещения, которое определяется жёсткостью связи.

Каждый вращательно движущийся элемент обладает моментом инерции Ji и связан с (i+1) — элементом механической связью, обладающей жёсткостью Ci. Соответственно каждый поступательно движущийся элемент имеет массу mj и связан со следующим связью с жёсткостью Сj. В пределах механических связей, для которых выполняется закон Гука, жёсткости можно определить с помощью соотношений

(2.1)

— нагрузка упругой механической связи;

— деформация упругого элемента при вращательном и поступательном движении.

В связи с наличием передач различные элементы системы движутся с различными скоростями. Поэтому для составления расчетных схем необходимо приведение всех параметров элементов кинематической цепи к одной расчётной скорости, обычно к скорости вала двигателя.

Условием соответствия расчётной схемы реальной механической системе является выполнение закона сохранения энергии. При приведении необходимо обеспечить сохранение кинетической и потенциальной энергий системы, а также элементарной работы всех действующих в системе сил и моментов на возможных перемещениях. Следовательно,

(2.2)

Отсюда получаем формулы приведения:

(2.3)

— передаточное число от вала приведения до i-го вала;

— радиус приведения к валу со скоростью ω 1 .

При приведении вращательных φi и поступательных Sj перемещений необходимо учитывать, что передаточное число и радиус приведения определяются соотношением скоростей. Тогда перемещения связаны зависимостями:

При линейных кинематических связях . В этом случае формулы приведения перемещений имеют вид:

При приведении жёсткостей механических связей должно выполняться условие равенства запаса потенциальной энергии деформации.

Потенциальная энергия Wn равна работе, совершаемой моментом М на участке изменения угла Δφ. Так как величина момента скручивания изменяется от 0 до Mmax, то, с учетом (2.1), работа равна:

(2.4)

Приведение моментов и сил нагрузки элементов кинематической цепи должно осуществляться при условии равенства элементарной работы на возможных перемещениях:

(2.5)

Для большей наглядности сопоставления по результатам приведения можно построить исходную приведённую расчётную схему, представив в ней массы в виде прямоугольников, площадь которых пропорциональна приведенным моментам инерции, а жёсткости связей между ними в виде соединений, длина которых обратно пропорциональна жёсткости.

Для рассматриваемой кинематической схемы приведённая расчётная схема имеет вид (рис. 2. 3):

Рис. 2.3. Приведённая расчётная схема кинематической цепи.

В ней выделены три наиболее значительные массы – ротор двигателя с моментом инерции , барабан с приведённым моментом инерции и груз . Вследствие относительно малых величин остальных моментов её можно существенно упростить. Для этого следует малые массы добавить к близлежащим большим, а затем определить эквивалентные жёсткости связей между полученными массами по общей формуле:

(2.6)

К ротору двигателя с моментом инерции приложен электромагнитный момент М и момент потерь ΔМ, причём для правильного учёта знаков действующих моментов указано положительное для всей приведённой схемы направление скорости ω 1 .

Исследования динамики электропривода показывают, что неразветвлённые расчётные механические схемы в большинстве случаев сводятся к трёхмассовой (рис. 2.4а), двухмассовой (рис. 2.4б) расчётным схемам и к жёсткому приведённому механическому звену (рис. 2.4в):

Рис. 2.4. Расчётные схемы электропривода: трёхмассовая (б) и жёсткое приведённое механическое звено (в).

Трёхмассовая упругая система используется в тех случаях, когда необходимо более детально анализировать движения масс механизма. При этом обычно используется моделирование на аналоговой (ABM) или цифровой (ЦВМ) вычислительных машинах. Для исследования отдельных физических особенностей используется двухмассовая система.

В тех случаях, когда параметры системы таковы, что влияние упругих связей незначительно, или когда этим влиянием можно пренебречь, используется жёсткое приведённое звено. Суммарный приведённый момент инерции может быть выражен:

(2.7)

n и k – число масс установки, совершающих соответственно вращательное и поступательное движение.

Суммарный приведённый к валу двигателя момент статической нагрузки MC

(2.8)

q и p – число внешних моментов Mi и сил , приложенных к системе, кроме электромагнитного момента двигателя.

Характерным примером разветвлённых кинематических схем является кинематическая схема многодвигательного электропривода, в котором двигатели через индивидуальные редукторы действуют на общий рабочий механизм.

Источник

Кинематическая схема привода рис

ПРАКТИЧЕСКАЯ РАБОТА № 1 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА

Цель работы:

1. Изучить последовательность выполнения кинематического расчета привода.

2. Ознакомиться с примером кинематического расчета привода.

3. Выполнить кинематический расчет привода для индивидуального задания.

Порядок выполнения кинематического расчета привода. Проектирование машины любого типа начинается с расчета привода, который начинают с выбора двигателя по потребной мощности, кинематической схеме привода и условиям эксплуатации, указанным в задании на разработку машины. Требуемую мощность двигателя определяют на основании исходных данных – рабочих характеристик машины.

Если указана мощность () на выходном валу привода, то расчетная мощность на входном валу привода определяется по зависимости:

, (1)

где — коэффициент полезного действия (КПД) привода, который равный произведению частных КПД элементов привода

, (2)

где — КПД отдельных звеньев кинематической цепи привода, ориентировочные значения, которых приведены в таблице 1.1.

С учетом расчетной мощности на входном валу привода определяется мощность двигателя привода из условия .

Если на выходном валу указаны вращающий момент () и его угловая скорость (), то мощность привода

. (3)

Если на выходном валу указаны тяговое усилие ()и его скорость (), то мощность на входном валу привода

. (4)

Таблица 1.1. Средние значения коэффициентов полезного действия элементов привода

с цилиндрическими колесами

с цилиндрическими колесами

Закрытая червячная при числе

В большинстве стационарных машин в качестве двигателя принимается трехфазный асинхронный электродвигатель, характерной особенностью которого является синхронная частота вращения, которая в зависимости от числа пар полюсов может быть 3000;1500;1000;750;600; 500 об/мин. Для обеспечения заданной скорости на выходном валу привода его передаточное отношение

(5)

Передаточное отношение привода равно произведению передаточных отношений всех передач привода:

, (6)

где — передаточное отношение отдельных передач кинематической цепи привода.

Передаточные отношения для различных видов механических передач приведены в таблице 1.2.

Таблица 1.2. Средние значения передаточных отношений механических передач

с цилиндрическими колесами

с четырехзаходным червяком

При кинематическом расчете привода принята нумерация валов начиная от вала приводного двигателя. Для каждого вала определяется мощность, момент и его угловая скорость (частота вращения) с учетом КПД передач и их передаточного отношения.

Мощность на том валу привода

. (7)

Угловая скорость на том валу привода

. (8)

Момент том валу привода

. (9)

2. Пример расчета. Определить мощность привода ленточного транспортера, представленного на рис. 1.1. Рассчитать мощность, момент и угловую скорость на каждом валу привода.

Исходные данные. Тяговое усилие на ленте 10 кН, скорость движения ленты . 1 м/с. Электродвигатель с синхронной частотой вращения 1500 об/мин. Диаметр приводного барабана транспортера 800 мм. Передаточные отношения ременной, зубчатой и цепной передач: 3,45; 5,6;3,25.

Рис.1.1. Кинематическая схема привода: 1 – двигатель, 2 – клиноременная передача, 3 – закрытая зубчатая передача, 4 – цепная передача, 5 – барабан ленточного конвейера.

1. Принимаем КПД элементов привода по таблице 1.1:

0,97 — КПД ременной передачи,

0,97 – КПД зубчатой передачи,

0,92 – КПД цепной передачи,

0,99 –КПД пары опорных подшипников.

2. Общий КПД привода по формуле (2):

0,84.

3. Частота вращения приводного барабана:

23,9 об/мин.

4. Передаточное отношение привода по формуле (5):

62,8.

Проверка передаточного отношения для заданных передаточных отношений передач по формуле (6)

62,8.

5. Расчетная мощность на валу двигателя привода определяется по формуле (1)

11900 Вт = 11,9 кВт.

6. Угловые скорости, мощности и крутящие моменты на валах привода:

I вал – вал двигателя:

157 1/с,

кВт,

.

II вал – входной вал редуктора:

45,5 1/с,

11,4 кВт,

III вал – выходной вал редуктора:

8,1 1/с,

10,9 кВт,

IV вал – вал барабана:

2,5 1/с,

10 кВт,

.

Проверка тягового усилия на ленте конвейера:

н = 10 кН.

3. Индивидуальные задания для выполнения кинематического расчета привода.

Индивидуальные задания по практической работе выполняются для кинематической схемы, представленной на рис.1.1. с исходными данными приведенными в таблицах 1.3,1.4.

Необходимо определить мощность привода ленточного транспортера, представленного на рис. 1.1. Рассчитать мощность, момент и угловую скорость на каждом валу привода.

Таблица 1.3. Исходные данные для кинематической схемы рис.1.1.

Мощность на выходном валу привода, кВт

Синхронная частота вращения двигателя, об/мин

Источник

Читайте также:  Передние стойки стабилизатора киа спортейдж 3 передний привод
Оцените статью
Авто Сервис