Производство тормозов для электродвигателя

Электромагнитные тормоза и комплектующие

Электромагнитный тормоз — устройство, позволяющее быстро (0.1с) останавливать инерционную нагрузку и удерживать её в неподвижном состоянии при отключении силового питания двигателя, что является необходимым при требовании к безопасности различного промышленного оборудования. Также основными назначениями электромагнитного тормоза являются:
— экстренное торможение с целью обеспечения безопасности всего привода,
— остановка исполнительных механизмов машин, связанная с функцией их позиционирования,
— сокращение к минимуму выбега приводов (требования безопасности, закрепленные правилами UDT),
— смонтированный на электрическом двигателе тормоз образует самотормозящий двигатель — приводной узел, отвечающий требованиям с точки зрения безопасности пользования и позиционирования привода.

Электромагнитные тормоза представляют собой небольшую конструкцию, состоящую из трех главных элементов:
— электромагнит, представляющий из себя корпус с размещенной в нём катушкой или набором катушек,
— якорь, являющийся исполнительным элементом, представляет собой антифрикционную поверхность для тормозного диска,
— тормозной диск, движущийся по зубчатой втулке, закрепленной на валу двигателя, представляет собой рабочую часть тормоза, тормозные диски изготавливаются с фрикционными безасбестовыми колодками.
В состоянии покоя ротор электродвигателя зафиксирован тормозом, давление пружин на якорь, который в свою очередь оказывает давление на тормозной диск, вызывает блокировку тормозного диска, и создает заданный тормозной момент.
Расжатие тормоза происходит посредством подачи напряжения к катушке электромагнита и притягивания якоря возбужденным электромагнитом. Исчезнувшее таким образом давление якоря на тормозной диск вызывает его отпуск и свободное вращение на валу электрического двигателя или совместно работающего с тормозом устройства.
Также возможно оснащение тормозов рычагом для ручного расжатия, обеспечивающего переключение привода в случае исчезновения напряжения, необходимого для расжатия тормоза.

Читайте также:  Устройство ручного тормоза вольво 940

Источник

Мотор в качестве электромагнитного тормоза

Я занимаюсь разработкой бесколлекторных моторов в компании Impulsor. В последнее время к нам часто обращаются для разработки мотора/генератора, который будет выступать в качестве тормоза. В данной статье я расскажу об особенностях такого применения моторов, какие при этом преимущества и недостатки, и как реализовать такой режим работы.

Преимущества и варианты использования

Использование мотора в качестве тормоза даёт ряд преимуществ и параметров, которых не достичь, используя другие, доступные на данный момент, виды тормозов. Однако у данного подхода есть и недостатки.

  • Быстрый режим включения/выключения и выставления тормозного момента.
  • Широкий диапазон рабочих оборотов. Возможно сделать и сверх оборотистый тормоз ( до 100 000 rpm), так наоборот и очень медленный.
  • Плавная установка нагрузки, отсутствие возможности случайной блокировки вала.
  • Отсутствие пыли и отработанных материалов от тормоза. Можно использовать в помещении или замкнутом объёме.
  • Можно использовать в качестве генератора.

Недостатки:

  • Ограничения по рабочей температуре до 150, 200 градусов. Немного поднять температуру возможно, но при этом цена изделия возрастает очень сильно.
  • Обычный тормоз из диска и колодок в тех же габаритах будет эффективнее.
  • Сильные ограничения по моменту на низких оборотах и невозможность полностью заблокировать вал. Данное ограничение можно обойти с применением контроллера с внешним питанием.
  • Постоянное наличие небольшого тормозного момента.

Благодаря своей скорости, точности и чистоте, такой тормоз незаменим в лабораториях и закрытых приборах. Близким аналогом мотора-тормоза, является порошковый тормоз. Он такой же быстрый, не создаёт пыль, но он не может работать на высоких оборотах и большинство существующих моделей и вовсе ограниченны 1500-3000rpm. Обычный дисковый тормоз не способен обеспечить такую же точность и стабильность работы.

Читайте также:  Барабан стояночного тормоза 7555 3507052

Режимы работы

Для электромагнитного тормоза доступны 3 режима торможения, они различаются тем, куда идёт энергия от торможения:

  1. Режим замыкания и выделения тепла непосредственно в моторе.
  2. Выделение тепла на внешней нагрузке, сопротивлении или биполярном транзисторе.
  3. Рекуперация и зарядка аккумулятора.

Далее я подробнее расскажу об этих режимах для моторов синхронного типа с постоянными магнитами BLDC, также это применимо и к обычным DC.

1. Режим замыкания

Это самый простой режим. В нём контакты мотора просто замыкаются, и тормозная мощность выделяется на сопротивлении обмотки мотора. Моторы изначально спроектированы с уклоном на охлаждение и к тому же они обладают достаточно большой массой и теплоёмкостью. Это позволяет достаточно интенсивно использовать такой режим без доработок мотора/генератора.

Для реализации данного режимы достаточно диодного моста и механического (кнопки, рубильника или реле) или электронного ключа (MOSFET, IGBT). Для корректировки тормозного усилия применяется ШИМ, который задаёт скважность открытия ключа. Схема подключения выглядит следующим образом:

Данный режим имеет интересную особенность. С ростом оборотов максимальный тормозной момент будет падать. Это связанно с тем, что обмотка мотора имеет значительную индуктивность и с ростом оборотов, растёт и частота токов. В результате реактивное сопротивление обмотки превысит активное и мощность потерь будет ниже максимально возможной для этого мотора. Характерная зависимость максимального тормозного момента от оборотов показана на графике ниже:

Несмотря на то, что любой готовый мотор можно сразу использовать в таком режиме, такой режим не позволит раскрыть весь потенциал изделия. Однако характеристики работы тормоза в таком режиме можно значительно повысить, есть его изначально проектировать как тормоз.

У этого режима есть ещё один важный недостаток. Из-за быстрого и резкого замыкания и размыкания обмоток будут возникать сильные электромагнитные помехи. Также диодный мост должен быть рассчитан на большие импульсные токи.

2. С внешней нагрузкой

В данном режиме основным источником выделения тепла от торможения служит внешнее сопротивление. Этот режим гораздо более эффективный, так как тормозная мощность более не ограниченна теплоотводом тепла мотора, а радиатор на сопротивлении можно сделать сколь угодно большим. Кроме того, если правильно подстраивать величину сопротивления, то максимальный тормозной момент будет выше, чем просто при замыкании и чем выше обороты, тем существеннее это будет проявляться.

Для реализации данного режима также необходим диодный мост, но после него включается либо механический реостат, либо биполярный транзистор со схемой контроля тока, либо сопротивления (схема электронной нагрузки). Схема подключения выглядит следующим образом:

При малой величине внешнего сопротивления относительно сопротивления мотора, характер тормозного момента будет близок к первому режиму. При увеличении сопротивления точка пикового момента будет смещаться к большим оборотам, и максимальная тормозная мощность будет расти. Динамика изменения тормозного момента с ростом сопротивления нагрузки показана на графике ниже:

Данный режим позволяет получить на нужном диапазоне рабочих оборотов участок, на котором тормозной момент возрастает с ростом оборотов. Этот режим работы крайне удачный, так как он позволяет стабилизировать обороты или ограничить их. Образуется стабильная система с обратной связью.

3. Рекуперация

Данный режим самый сложный в реализации. Он требует контроллера (ESC) наподобие тех, что применяется для управления бесколлекторными моторами BLDC. Но при этом данный режим и самый эффективный. Он способен устранить большинство недостатков тормоза такого типа. Так, например, контроллер позволит полностью блокировать вал мотора, он позволит использовать тормоз одновременно в режиме генерации и контролируемого торможения и в данном режиме можно достигнуть тормозных моментов значительно выше, чем в предыдущих 2х.

В данной статье я не буду подробно описывать устройство контроллера и алгоритмы его работы, т.к. эта тема для отдельной статьи, а возможно и не одной. Для желающих разобраться в данном вопросе можно изучить принцип работы контроллера в электротранспорте (велосипедах, самокатах) и то как в них реализованы алгоритмы торможения и рекуперации.

Источник

Тормозные модули Cantoni. Дисковые тормоза переменного тока и тормозные модули для электродвигателей.

В определенных ситуациях асинхронный двигатель должен полностью остановиться или затормозить – к примеру, при аварийном выключении первой категории. Эту функцию выполняют дисковые тормоза – электромагнитные устройства переменного тока – и тормозные модули – устройства для обеспечения быстрого торможения электродвигателей в механизмах с большой инерционной массой.

Конструктивные разновидности дискового тормоза Cantoni:

  • Пристроенные. В тормозное устройство входят электромагнит, тормозной диск, пружины и система настройки тормозного момента. Двигатель включается на номинальное напряжение и растормаживается, т.к. через диодный мостик включается электромагнит.
  • Встроенные. Основная часть тормоза дискового находится внутри двигателя, принцип действия – использование части магнитного потока между ротором и статором для создания растормаживающей тяги. Ротор имеет специальную конструкцию – тормозная и основная части собраны в одно целое. Тормозной момент создает пружина, прижимающая диск с тормозными накладками к подшипниковому щиту.

Оснащение электромагнитным тормозом позволяет оперативно останавливать инерционную нагрузку и при отключенном силовом питании удерживать ее неподвижно – в соответствии с требованиями к эксплуатации некоторых асинхронных двигателей в производственном оборудовании.

Новинка взрывозащищённые тормоза Cantoni NEX

Электромагнитные тормоза Cantoni NEX 05, взрывозащищённые, серии NEX постоянного тока, с пружинным включением и электромагнитным отпуском предназначены для торможения вращающихся частей машин и их точного позиционирования. Применяются в качестве тормозов позиционирования и торможения. Тормоза были спроектированы, произведены и прошли испытания в соответствии с требованиями систему управления качеством ISO 9001 и ISO 14001. Наши продукты, представленные в настоящей информационной карте, имеют обозначение CE, что означает их соответствие с Директивами ЕС в области безопасности. Серия тормозов NEX соответствует всем основным требованиям для оборудования и систем защиты, предназначенных для применения в зонах риска взрыва газов и пыли (Директива 94/9/ЕС ATEX), и имеют подтверждающий сертификат.

Защиты от взрыва газов и пыли для II группы оборудования:

Источник

Устройство механического тормоза для электродвигателя

Март 23, 2015 Оборудование и неисправности kmelectric

Если выключить электрический агрегат от сети, то определенное время он будет вращаться по инерции. В случае если двигатель много весит и имеет высокую ранее набранную скорость, то время до полной остановки будет увеличено.

Но в период функционирования могут использоваться остановки и чрезмерно частые пуски. Следует заметить, что моментальная остановка двигателя куда более значима в сравнении с оперативным стартом.

Если время до запуска двигателя определяется в результате выключенного оборудования, то время при остановке может дать определенные поломки оборудования или даже потенциальные риски для жизни рабочих.

Актуальность применения электромагнитного тормоза

Преобразователь частоты может некоторое время удерживать ротор в неподвижном состоянии путем подачи на двигатель постоянного напряжения. Однако электропривод способен находиться в таком режиме лишь несколько минут, после чего начинают перегреваться обмотки. Поэтому в ряде случаев применяют электродвигатели с тормозом. Прежде всего это относится к грузоподъемному оборудованию — кранам, лифтам и проч.

Электромеханический тормоз позволяет быстро останавливать привод и удерживать его в неподвижном состоянии сколь угодно долго. Обычно такая необходимость продиктована соображениями безопасной эксплуатации оборудования.


Назначение и область применения

Тормозные системы для электродвигателей различных типов предназначены для оперативного снижения частоты вращения рабочего вала вплоть до полной его остановки. Данные устройства получили широкое распространение в приводах различных промышленных механизмов, а именно:

  • Конвейерное оборудование.
  • Лифтовое хозяйство и подъемные устройства.
  • Сервоприводы в системах управления и автоматизации.
  • Станочное оборудование с циклическим рабочим циклом.
  • Транспортные средства, включая электропогрузчики, пассажирский электротранспорт.

Применение систем такого класса позволяет предотвратить выбег привода, обеспечить остановку вала в требуемом положении в механизмах, для которых важно позиционирование. Эффективная тормозная система позволяет сократить рабочий цикл оборудования, повысить быстродействие и точность работы, обеспечить безопасные условия эксплуатации.

Конструкция

В конструкцию электромагнитного тормоза входят:

  • электромагнит с катушкой
  • тормозной диск с накладками
  • прижимные пружины
  • система настройки прижимного момента

В большинстве случаев тормоз является нормально заторможенным. Это означает, что ротор двигателя фиксируется при отсутствии питания тормоза. При подаче питания на катушку тормозные колодки отжимаются, и ротор растормаживается.

Существующие виды тормоза на вал двигателя

На практике используют различные конструктивные исполнения тормоза на вал двигателя. Широкое применение получили системы электрического торможения, такие как:

  • Устройства динамического торможения, принцип действия которых основан на различиях магнитного поля, создаваемого переменным и постоянным током. При переключении на другой источник питания создается постоянное магнитное поле, создающее тормозной момент, направленный в сторону, противоположную направлению вращения ротора электродвигателя.
  • Системы рекуперативного торможения в основном используются на подъемном оборудовании, в лифтовом хозяйстве, электротранспорте. Принцип действия основан на использовании разницы в частоте вращения ротора и самой синхронной частоты. В таком режиме двигатель начинает отдавать электроэнергию в сеть, что приводит к снижению мощностии получению требуемого тормозного момента.

Но подобные системы не обеспечивают моментальной остановки, поэтому большее применение получили электродвигатели с электромагнитным тормозом.

Электромагнитный тормоз на электродвигатель

Конструктивно система представляет собой механизм из электромагнита, исполнительного якоря и тормозного диска, который крепится непосредственно на валу двигателя. В состоянии покоя за счет действия пружин тормозной диск жестко фиксируется, что предотвращает возможность вращения вала. При подаче управляющего направления на электромагнит происходит втягивание якоря, устраняющее давление пружин, что позволяет разблокировать тормозной диск и запустить электродвигатель.

При необходимости экстренной остановки напряжение с электромагнита снимают, что вызывает появление тормозного момента, необходимого для блокировки вала.

Способы монтажа

Тормоз может быть встроен в конструкцию двигателя либо являться отдельным устройством. Наиболее предпочтителен встроенный тормоз, который располагается на оси ротора. Такая конструкция отличается компактностью и простотой в эксплуатации.

Если применение двигателя со встроенным тормозом по каким-то причинам нецелесообразно, применяют отдельный тормоз. Его основные преимущества – возможность монтажа в любом месте привода (например, на оси редуктора), размеры и способ крепления устройства не привязаны к конструкции двигателя.

Серия Combinorm

Приводимые в действие постоянным током тормоза и сцепления используют сконцентрированный на полюсах электромагнитный поток для соединения, разделения и удержания валов с подсоединенными к ним нагрузками. Combinorm содержит полную программу тормозов, сцеплений и комбинаций встраиваемых и подключаемых элементов для применения в машинах, сооружениях и приборах с диапазоном применения от О.5 до 5ОО Nm

  • Combinorm B — самое экономичное решение для торможения и удержания грузов, для установки с встроенным фланцем и валом в машинах и устройствах. Область применения: Обработка почты, ветряные установки, дверные и затворные системы, роликовые конвейеры, обвязочные машины, балансировочные станки, сортирующие устройства.
  • Combinorm K — линейка бес корпусных конструктивных элементов, разработанная для подключения и торможения вспомогательных приводов, которая благодаря пружинной якорной системе позволяет производить без зазорную передачу. Установка производится непосредственно в конструкции машины. Область применения: бумагообрабатывающее производство, прачечное оборудование, загрузочные машины.
  • Combinorm C — миллионы раз испытанное в машиностроении переключаемое подключение вала, обеспечивающее простое управление включения и отключения функционирующих частей. Электромагниты с классом изоляции В и с номинальным напряжением 24 В DC создают силовой поток, распространяющийся по полюсам ротора и якоря. Область применения: Бумагоделательное производство, ветряные установки, дверные и затворные системы, системы подачи, пачковязальные устройства, сортирующие устройства.
  • Combinorm T — это электромагнитные зубчатые муфты для работы в сухой или влажной среде. Крутящие моменты передаются ведущими гранями зубцов без зазора. Для передачи высоких крутящих моментов требуется меньше места в обоих направлениях. Область применения: Дверные приводы. Машины для нанесения печати. Транспортирующие ролики. Агрегатные соединения.

Способы подачи питания на тормоз

Электромеханический тормоз может иметь зависимое или независимое питание. В первом случае его катушка запитывается от того же источника, что и обмотки двигателя. При этом тормоз должен быть нормально заторможенным, чтобы при пропадании питания он фиксировал ротор.

Тормоз с независимым питанием может управляться более гибко, однако он требует отдельную схему питания, которая должна быть синхронизирована с питанием двигателя. Наиболее универсальный тормоз данного типа – двухобмоточный. Катушка в нем состоит из двух обмоток. Короткой обмоткой тормоз включается, длинной (с меньшим током) удерживается.

Если питание двигателя производится от ПЧ, необходимо в настройках преобразователя обратить внимание на параметры электромеханического тормоза. В идеальном варианте ПЧ и двигатель с тормозом должны быть выпущены одним производителем.

Двигатель со встроенным электромагнитным тормозом предназначен для привода механизмов, требующих фиксированного останова за регламентированный промежуток времени, после отключения двигателя от сети. Изделие выпускается с высотой оси вращения 71, 80, 90, 100 мм в исполнениях: — общего назначения любых монтажных исполнений (Е, Е2К); — с ручным растормаживающим устройством (Е2, Е2К2); — с повышенным скольжением; — многоскоростные по согласованию с заказчиком. Режим работы S4 ПВ 40% с числом включений в час 240,120,60 (в зависимости от исполнения). Время растормаживания (включение электромагнитного тормоза) не более 0,02 с. Время отключение тормоза, не более 0,1 с. Питание тормоза осуществляется либо последовательно с фазой двигателя АИР….Е, Е2, либо независимо от двигателя АИР….Е2К, Е2К2 (напряжение питания тормоза 220 В).

Двигатели с пристроенным электромагнитным тормозом АИР71 ЕК…АИР132ЕК, АИР63ЕК2…АИР132ЕК2, изготавливаются в диапазоне высот оси вращения 63… 132 мм и предназначены для привода механизмов, требующих фиксированного останова за регламентированное время после отключения от сети или позиционирования груза рабочих органов механизмов. Режим работы двигателей S4-40% по ГОСТ МЭК 60034-1. Число включений в час 240,120,60 (в зависимости от исполнения). Группа исполнения по стойкости к воздействию механических внешних факторов — М8 и М3 по ГОСТ 17516.1-90. Степень защиты двигателей — IP54, тормоза IP55 по ГОСТ 17494-87. Климатическое исполнение и категория размещения -У2, УЗ, Т2, ТЗ, УХЛ2 по ГОСТ 15150-69. По согласованию с изготовителем возможна поставка двигателей в исполнении У1, а также степенью защиты IP55. Двигатели с пристроенным электромагнитным тормозом изготавливаются на базе двигателей общепромышленного исполнения. Двигатели АИР71 ЕК2…АИР132ЕК2 имеют рычаг для ручного растормаживания, позволяющего проводить пусконаладочные работы, а также разблокировать тормозную систему при потере напряжения на блоке питания. Питание электромагнитного тормоза осуществляется от независимого источника

380В 50 Гц через выпрямительный блок, входящий в комплект поставки. Выпрямительный блок монтируется вне корпуса электродвигателя (в шкафу, пульте управления). По согласованию с Изготовителем выпрямительный блок может быть установлен в коробке выводов двигателя.

Обслуживание электромеханического тормоза

Поскольку тормоз является электромеханическим устройством, подверженным износу, он нуждается в регулярном техническом обслуживании. Необходимо регулярно проверять тормозной зазор, который должен иметь значение, рекомендованное производителем. Зазор может уменьшаться или увеличиваться, а также иметь перекосы из-за износа тормозных колодок либо пружин, нарушения крепежа.

Поскольку при работе двигателя тормоз подвергается ударам и вибрации, необходимо тщательно следить за фиксацией крепежных гаек и шпилек. Такеж рекомендуется использовать фиксатор резьбы.

Для ремонта и технического обслуживания оборудования обычно предусматривается возможность ручного растормаживания при помощи специального рычага. Эту функцию нужно использовать осторожно во избежание порчи оборудования и травм персонала.

Тормозной момент электромагнитного тормоза может быть отрегулирован в некоторых пределах.

Серия Combibox

Это готовый для установки электромагнитный модуль сцепление-тормоз. Модульная система разработана для множества вариантов применения. Запатентованный способ установки позволяет производить дополнительные настройки воздушного зазора в уже встроенном приборе, что во много раз увеличивает срок службы элементов трения, подверженных износу. Модули (элементы), разработанные для функций включения и останова, значительно снижают потребление энергии благодаря непрерывной работе привода.

  • тип 10 – с приводимыми в действие постоянным током односторонним сцеплением и тормозом для высокой частоты переключений и точного позиционирования;
  • тип 09 – версия СОМВIВОX без тормоза, т.е. сцепление в отдельном корпусе для установки, например, между двигателем и передаточным механизмом;
  • тип 06 – приводимый в действие отключением питания односторонний тормоз на постоянных магнитах. Эта версия отличается тем, что положение выходного вала сохраняется в без токовом состоянии. Значение номинального момента тормоза немного ниже значения номинального момента сцепления.

Режим работы

Использовать электромеханический тормоз для торможения двигателя на ненулевой скорости рекомендуется только в аварийных случаях, поскольку в этом режиме резко повышается износ и нагрев тормозных колодок. Схема должна быть спроектирована таким образом, чтобы тормоз был стояночным, то есть включался только на нулевой скорости. Для этого в ПЧ имеется специальный выход. В таком режиме тормозные колодки почти не изнашиваются и имеют большой ресурс работы.

При частом использовании функции торможения происходит не только износ, но и нагрев тормоза. Если технологический процесс не позволяет сократить число торможений в единицу времени, следует предусмотреть дополнительный обдув тормоза, а также более ответственно подходить к его техобслуживанию.

Другие полезные материалы:

Техобслуживание преобразователя частоты Способы защиты электродвигателей Преимущества и недостатки асинхронного двигателя

Источник

Оцените статью
Авто Сервис