Ременные приводы для чпу

Расчет и настройка ремённой и винтовой придачи ЧПУ станка. Калибровка.

Продолжаем разбираться с ЧПУ станком. Настройку прошивки GRBL рассмотрели тут: Прошивка grbl 1.1, настройка — инструкция на русском. Но где же взять параметры для настройки ЧПУ станка? Сегодня в статье рассмотрим, как можно рассчитать винтовую и ременную передачу ЧПУ станка. Но расчет не всегда дает 100% результат. Для проверки и корректировки неточности используется калибровка ЧПУ станка. Как это сделать на практике я уже рассказывал в проекте:ЧПУ плоттер на Arduino своими руками.

При расчете нужно учитывать один немало важный параметр, который мы еще не рассматривали подробно – это Микрошаг.

Что такое микрошаг и как настраивать микрошаг шагового двигателя.

Основной параметр шаговых двигателей (ШД) это количество шагов на 1 оборот. Самое распространённое значение для ШД – 200 шагов на оборот (или 1,8 градуса на шаг). Мы будем использовать это разрешение во всех сегодняшних примерах. Более точную информацию можно узнать в описании к вашему шаговому двигателю. Зачастую 200 шагов на оборот, могут быть недостаточными для достижения необходимой точности. С целью повышения точности можно изменить передаточное число механически (использовать редуктор), а можно включить микрошаг – режим деления шага шагового двигателя, это увеличит число шагов на оборот, с коэффициентом 2n (n — целое число). Драйвер A4988 поддерживает деление шага: 1, 1/2, 1/4, 1/8, 1/16. Подробнее о драйвере A4988 читайте тут: Драйвер шагового двигателя A4988. Драйвер DRV8825 поддерживает деление шага: 1; 1/2; 1/4; 1/8; 1/16; 1/32. Подробнее о драйвере DRV8825 читайте тут: Драйвер шагового двигателя DRV8825.

Читайте также:  Ultraiso не видит виртуального привода

Давайте рассмотрим пример. Если мы выставим микрошаг 16, что является в 16 раз больше полного шага и в нашем примере даст 3200 (200х16) шагов на оборот. На первый взгляд это отличный результат и почему бы не использовать максимальное деление шага во всех станках. Но тут есть и минус – это падение крутящего момента при увеличении деления шага. Подробнее Микрошаг рассмотрим в следующей статье.

Расчёт винтовой передачи ЧПУ станка.

Винтовая передача ЧПУ, либо ее более продвинутый вариант шарико-винтовая передача (ШВП), являются наиболее часто используемым вариантом перевода вращательного движения вала шагового двигателя в линейное перемещение исполнительного механизма.

Для расчёта разрешения нам необходимо знать ШАГ винта, либо шаг винта ШВП. В описании трапецеидальных винтов обычно пишут Tr8x8,Tr10x2, первая цифра говорит нам о диаметре винта, вторая как раз о его шаге в мм. Винты ШВП обычно обозначаются 1204, 1605 и т.п. Первые 2 цифры – это диаметр винта, вторые две – это шаг в мм. В 3d-принтерах обычно используют винт Tr8x8, диаметром 8 мм и с шагом 8 мм. Обзор моего 3d-принтера можно посмотреть тут:Обзор 3D принтера Anet A8. Сборка. Наладка.

Формула расчета винтовой передачи ЧПУ получается следующей, в числителе – количество шагов на оборот, в знаменателе – перемещение за оборот.

Тп = Sшд*Fшд/Pр

  • Тп — точность перемещения, шаг/мм
  • Sшд — количество шагов на оборот для двигателя (в наших примерах 200)
  • Fшд — микрошаг (1, 2, 4, 8 и т. д.)
  • — шаг винта (например, 8 мм)

Рассчитаем пример со следующими параметрами, двигатель 200 шагов на оборот, с 4-кратным микрошагом, с трапецеидальным винтом Tr8x8 даст нам 100 шагов на мм.

Другими словами, для того чтобы ЧПУ станок переместился на 1 мм, нам нужно сделать 100 шагов двигателя. Что является неплохой точностью.

Расчетные значения нужно указать в прошивке GRBL:

Расчет ременной передачи ЧПУ станка.

Во многих ЧПУ станках используются ремни и шкивы. Ремни и шкивы бывают разных форм и размеров, но одним из распространённых стандартов является GT2.

Следующие уравнение применимо для цепных и ременных передач, если вы введете правильный шаг. Обратите внимание, что эти уравнения не учитывают люфт.

Вот простое уравнение, которое вы можете использовать для расчета шагов на мм для линейного движения с ремнями и шкивами.

Тлп = Sшд*Fшд/Pр*Nшк

  • Тлп — точность линейного перемещения, шаг/мм
  • Sшд — количество шагов на оборот для двигателя (в наших примерах 200)
  • Fшд — микрошаг (1, 2, 4, 8 и т. д.)
  • — шаг ремня (например, 2 мм)
  • Nшк — количество зубьев на шкиве, на валу двигателя.

Попробуем посчитать для примера с такими параметрами, двигатель 200 шагов на оборот, с 2-кратным микрошагом, 2-миллиметровыми ремнями GT2 и шкивом с 20 зубцами даст нам 10 шагов на мм.

200*2/2*20=10 шагов/мм.

Данный пример подойдет для расчета перемещения 3d-принтера. ЧПУ станков на ремнях: лазерный гравировальный, плоттер и пр.

Расчетные значения нужно указать в прошивке GRBL:

Калибровка ЧПУ станка.

После настройки станка необходимо проверить точность перемещения станка по осям. Для этого нужно отправить команду на перемещение по оси, на относительно большое расстояние. Я чаще всего использую 100 мм. После чего произвести замер перемещения. Если значения не отличаются – это означает, что все работает верно. Но если расстояние перемещения больше или меньше, то нужно внести корректировку – провести калибровку ЧПУ станка. Для этого будем использовать формулу:

Тк = Тп * Kп / Kф

  • Тк – калибровочное значение, шаг/мм.
  • Тп — точность перемещения, шаг/мм (из примера 100 шаг/мм)
  • Kп — заданное значение для перемещения (в моем случае 100 мм.)
  • — фактически, на какое расстояние переместилась ось (допустим на 99 мм.)

Для примера проведем расчёт винтовой придачи, которую рассчитывали выше и выяснили, что нужно совершить 100 шагов для перемещения на 1 мм. Также допустим, что мы отправили команду на перемещение станка на 100 мм, а по факту он переместился на 99 мм. Произведём расчет:

100*100/99=101,01 шагов/мм.

Указываем данное значение в прошивке GRBL и проводим калибровку еще раз. Если ЧПУ станок перемещается на заданное значение, можно пользоваться станком. Иначе проводим повторную калибровку.

Понравился статья Расчет и настройка ремённой и винтовой придачи ЧПУ станка. Калибровка ! Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

Технологии начинаются с простого!

Источник

ЧПУ привод. Какую передачу выбрать?

ВИДЫ ПЕРЕДАЧ, ИХ ПРЕИМУЩЕСТВА И НЕДОСТАТКИ.

В приводе оси с ЧПУ передача используется для преобразования вращательного движения вала двигателя в поступательное движение вдоль оси. Ниже перечислены наиболее широко используемые виды передач в станках ЧПУ. Мы оставим за пределами нашей статьи экзотические для DIY-сектора передачи, как линейный серводвигатель и линейный шаговый двигатель по причинам практического характера, и рассмотрим самые распространенные.

Передача винт-гайка

Под передачей винт-гайка подразумевается пара стальной винт с трапецеидальной или метрической резьбой и гайка. Данный вид передачи является передачей с трением скольжения и на практике в свою очередь имеет несколько разновидностей.

  • Строительная шпилька и гайка.

Самый бюджетный вариант. Строительная шпилька вообще не предназначена для использования в станкостроении, техпроцесс её изготовления нацелен на применение в строительной сфере, вследствие чего данный вид передачи обладает самым полным набором недостатков — высокой погрешностью, низкой прямолинейностью, малыми нагрузочными характеристиками, малой износостойкостью, высоким трением и т.д. Однако, все же применяется в DIY-станках, изготавливаемых в учебных целях, вследствии низкой себестоимости. Если Вы решили во что бы то ни стало сэкономить на передаче и поставить строительную шпильку, обязательно предусмотрите возможность замены её на трапецеидальный винт или ШВП! Скорее всего, станок на строительной шпильке не оправдает Ваших надежд.

  • Приводной винт с трапецеидальной или прямоугольной резьбой.

Винт с трапецеидальной резьбой — наиболее распространный вид передачи в металлообрабатывающих станках в прошлом веке и по настоящее время. Трапецеидальные винты производятся их разных видов конструкционных углеродистых сталей путем нарезки резьбы на стальном прутке или её накатки. Накатные винты имеют существенно лучшие характерстики, чем нарезные. Широкое применение трапецеидальных винтов обусловливается их широкой номенклатурой, доступностью на рынке винтов разных классов точности, от C10 до С3. Гайка на винт изготавливается из износостойких материалов, таких, как полиамиды(капролон, нейлон), тефлон, бронза. Правильно рассчитанные и изготовленные трапецеидальные передачи отличаются высокой износостойкостью, т.к. трение идет с малым давлением(вследствие сравнительно большой поверхности трения). На многих все еще работающих станках советского производства пары стоят с момента выпуска станка, и не менялись уже 30-40 лет. Также на таких ходовых винтах возможно использование разрезных гаек, что позволяет с помощью сжатия гайки регулировать натяг и выбирать появляющийся со временем люфт. Из минусов стоит отметить, как ни странно, простоту изготовления винта, что автоматически означает наличие множества производителей, с очень широким разбросом показателей качества. Бюджетные серии винтов изготавливаются из стали #45 без закалки поверхности, что может привести к нарушению прямолинейности винта(иначе говоря, винты малого диаметра мягкие и часто гнутся в процессе транспортировки). К минусам и плюсам одновременно относится высокое трение в передаче. С одной стороны, это снижает КПД, требуется более мощный двигатель для вращения винта. С другой — трение несколько демпфирует вращательные колебания винта, что может быть полезным в случае использования шаговых двигателей(см. резонанс шаговых двигателей). Данный эффект, правда, проявлен достаточно слабо, и для борьбы с резонансом нужны другие способы. Подводя итог, можно сказать, что трапецеидальный винт еще не утратил своего значения в качестве передачи станка с ЧПУ и с успехом используется в станках всех классов.

  • Шарико-винтовая передача (см. основную статью: ШВП)

ШВП, или шарико-винтовая передача(также называют «шарико-винтовая пара»), в настоящий момент является стандартом де-факто при строительстве станков с ЧПУ. Стальной винт с беговыми дорожками для шариков, подвергнутый индукционной закалке и последующей шлифовке, и специальным образом подогнанная гайка с циркулирующими внутри шариками. При вращении винта гайки катятся по беговым дорожкам, передавая усилие на корпус гайки. Такая передача отличается высокой точностью, высокими КПД (80, 90% и более) и ресурсом. ШВП чаще используется в станках с ЧПУ, так как его использование позволяет использовать двигатели меньшей мощности(не требуются столь существенные усилия страгивания, как в случае с передачей винт-гайка). ШВП поставляется как законченная пара, не требует подгонки гайки и зачастую не требует обработки концов для установки в опоры — это делает производитель, т.е. ШВП зачастую соответствует принципу plug and play, тогда как в случае использования трапецеидальных винтов гайки и винты зачастую изготавливаются в разных местах, и могут потребовать тщательной подгонки, без которой могут возникнуть зазоры, люфты, повышенное трение, износ и т.п. ШВП хуже переносит опилки,пыль и отсутствие смазки, чем передача винт-гайка, при попадании инородного тела даже очень малого размера передача может подклинивать, т.к. соседние шарики в канале вращаются в противоположном направлении. Часто требуется дополнительная защита винта с помощью гофроматериалов. ШВП, также как и трапецеидальный винт, имеют ограничения по длине — слишком длинный винт провисает под собственным весом и при вращении винта(скорость вращения винта с шагом 5 мм в портальных станках достигает 10-15 об/сек и выше) ведет себя как скакалка, от чего станок вибрирует, а узлы, фиксирующие винт, испытывают ударные нагрузки, их ресурс быстро снижается, в посадочных местах появляются зазоры, что в свою очередь усиливает вибрацию станка и снижает качество производимых изделий. Опыт показывает, что отношение диаметра ШВП к его длине не должно быть менее числа 0.022, а также не рекомендуется превышать длину винта в 2000 мм. Для устранения эффекта «скакалки» применяются конструкции с неподвижным винтом и вращающейся гайкой, но такие узлы, как правило, существенно дороже и сложней в изготовлении, а также требуют места, что не всегда возможно реализовать на компактных порталах. Если Вы планируете иногда отключать двигатели приводов и работать на станке в ручном режиме, то лучше не использовать ШВП — передача без самоторможения может доставить Вам уйму хлопот. О разновидностях ШВП и их особенностях смотрите основную статью.

Зубчатая передача

Зубчатые передачи, применяемые в станках с ЧПУ, бывают 2 видов

Ременная передача используется в тех случаях, когда масса движимой части невелика. Зубчатый ремень растягивается вдоль оси и фиксируется по концам специальными пластиками. Зубчатый шкив надевается непосредственно на вал двигателя, закрепленного на движимой части(портале), плотных обхват шкива ремнем обеспечивается натяжными роликами, которые обычно изготавливаются из подходящих по размеру радиальных шарикоподшипников. Главный минус ременной передачи — свойства ремня. Несмотря на то, что все приводные ремни армированы стальным или стекловолоконным кордом, это не спасает его от растяжения, и чем длиннее ремень, тем сильней он будет тянуться. Чем сильнее тянется ремень, тем меньше точность и ниже частота собственных колебаний — передача может попадать в мощнейший резонанс на самых необходимых частотах перемещений. Этот эффект можно снизить, закрепив отрезок ремня на станке зубцами вверх, и наложив на него зубец-в зубец еще один ремень, приподняв петлю, в которую размещается шкив. Как видно из схемы, растяжению подвергается его незначительный по длине отрезок, что нивелирует указанные выше недостатки. Ременная передача дает мягкое движение, если нет резонанса, в отличие от ШВП практически не боится пыли и стружки, а также позволяет регулировать натяг ремня для выборки люфта, из-за чего в первом приближении зачастую ременные редукторы рассматриваются как безлюфтовые. Ремни используются, как правило, там, где нет высоких требований по точности и мала масса портала и нагрузка на рабочий инструмент — раскроечные станки плазменной резки, пенорезки.

Стальная зубчатая рейка используется на широкоформатных раскроечных станках плазменной и лазерной резки, портальных фрезерных станках широкого формата, форматно-раскроечных станках, где использование ШВП невозможно по причине провисания винта, а также где нужна высокая скорость перемещения. Передачи шестерня-рейка, также как и ШВП, изготавливаются с определенным классом точности. Наибольшее распространение получили зубчатые передачи классов С5, С7 и С8. Зубчатая рейка, также как и ремень, «не боится» пыли и стружки, но лишена недостатка растяжимости. Однако, при установке шестерни непосредственно на вал двигателя передача лязгает и вибрирует, что в сочетании с резонансом шагового двигателя может превратить Ваш станок в отличный вибростенд. Чтобы этого избежать, между двигателем и рейкой можно установить ременной редуктор, выполняющий демпфирующую функцию, или использовать двигатель с планетарным редуктором — тогда основную часть времени шаговый двигатель будет работать на высоких скоростях вращения, где резонанс практически не проявляется. Также возможным вариантом является применение серводвигателей. Зубчатая рейка классов С5 и С7 за редким исключением производится короткими отрезками длиной около 1000 мм, и для сборки станка её стыкуют специальным образом.

Выбор передачи для станка

Выбор передачи для станка должен базироваться на тех характеристиках, которые для Вашего станка наиболее критичны. Передачи винт-гайка применяются там, где нет высоких требований по точности и скорости перемещений, если от передачи требуется самоторможение, а также в случае жестких ограничений по бюджету. ШВП обладает наибольшим спектром применения, вы можете купить ШВП с нужным Вам классом точности, шагом, возможностью создания преднатяга и без неё. Единственный случай, когда ШВП не может быть использовано — если от передачи требуется самоторможение, однако если речь о торможении передачи в целях безопасности(удержание шпиндельной бабки), то вопрос решается использованием электромагнитного тормоза на двигателе, противовесом и т.п. Рейка и ремень применяются в станках с большим рабочим полем — от 1.5 квадратных метров и больше — прежде всего для достижения большой скорости раскроя и холостых перемещений. На станках таких размеров не ставится цель достигнуть точности в десятки микрон, 0.2-0.3 мм в большинстве случаев более чем достаточно, поэтому растяжимость ремня и точность реечной передачи не являются препятствием для их применения. Итого, если у вас большой раскроечный станок — первыми кандидатами на рассмотрение будут зубчатая рейка и ременная передача. Если у вас настольный фрезерно-гравировальный станок для учебных или хоббийных целей, Вам подойдет передача винт-гайка. Если вы строите станок среднего формата для бизнеса, на производство, оптимальным выбором будет ШВП. После выбора типа, вам следует определиться с конкретными параметрами передачи.

Источник

Оцените статью
Авто Сервис