Технические характеристики привода выключателя

Приводы выключателей

Привод выключателя предназначен для операции включения, удержания во включенном положении и отключения выключателя.

Привод — это специальное устройство, создающее необходимое усилие для производства перечисленных операций. В некоторых выключателях привод конструктивно связан в одно целое с его контактной системой (воздушные выключатели).

Основными частями привода являются: включающий механизм, запирающий механизм (защелка, собачка), который удерживает выключатель во включенном положении, и расцепляющий механизм, освобождающий защелку при отключении.

Наибольшая работа в существующих конструкциях выключателей совершается приводом при включении, так как при этой операции преодолевается собственная масса подвижных контактов, сопротивление отключающих пружин, трение и силы инерции в движущихся частях. При включении на существующее КЗ механизм привода, кроме того, должен преодолеть электродинамические усилия, отталкивающие контакты друг от друга.

Операция включения во избежание приваривания контактов выключателя должна производиться быстро. Чем меньше время включения, тем меньше пауза при АПВ.

При отключении работа привода сводится к освобождению защелки, удерживающей механизм во включенном положении. Само отключение происходит за счет силы сжатых или растянутых отключающих пружин. В зависимости от источника энергии, затрачиваемой на включение и отключение, имеются ручные, пружинные, грузовые, электромагнитные, пневматические приводы.

Ручные приводы применяются для маломощных выключателей, когда мускульной силы оператора достаточно для совершения работы включения. Отключение может быть автоматическим с помощью реле, встроенных в привод.

В современных электроустановках сохранились ручные приводы ПРА только для выключателей нагрузки ВНПР.

Пружинный привод является приводом косвенного действия. Энергия, необходимая для включения, запасается в мощной пружине, которая заводится от руки или электродвигателем небольшой мощности. После каждого включения необходимо вновь завести пружину.

Обычно привод дополняется специальным электродвигателем, осуществляющим завод пружины. Такой привод позволяет осуществлять АПВ.

Недостатком пружинных приводов является уменьшение тягового усилия в конце хода включения вследствие уменьшения деформации пружин. Чтобы устранить этот недостаток, пружинные приводы дополняются маховиком, который поглощает избыточную энергию в начале включения и отдает накопленную энергию в конце включения. Приводы подобного типа ППМ-10 применяются для выключателей ВМГ-10 и ВМП-10. Завод пружины производится электродвигателем через редуктор. Запорно-пусковой механизм привода удерживает пружины в заведенном состоянии. Для автоматического включения необходимо освободить заводящий рычаг, после чего энергия заведенной спиральной пружины поворачивает вал выключателя на включение.

Дистанционное и автоматическое отключение выключателя производится с помощью реле, встроенных в нижней части привода, которые через планку отключения воздействуют на механизм свободного расцепления. Привод допускает механическое АП’В. Импульс для работы такого АПВ дается при отключении благодаря освобождению включающего механизма привода.

Аналогичное устройство имеет привод ПП, применяемый для выключателей ВМГ. Выключатели ВМПП, ВЭ-10, ВК-10 для КРУ имеют встроенный пружинный привод.

Пружинные приводы не требуют для своего управления источника постоянного тока, что является существенным преимуществом перед другими приводами. Недостатком его является малая мощность, поэтому он применяется для маломасляных выключателей 6—10 кВ.

Электромагнитные приводы относятся к приводам прямого действия: энергия, необходимая для включения, сообщается приводу в процессе самого включения от источника большой мощности.

Усилие, необходимое для включения выключателя, создается стальным сердечником, который втягивается в катушку электромагнита при прохождении по ней тока.

Шток сердечника упирается в ролик рычажного механизма, поднимает его вверх вместе с двумя шарнирно-связанными рычагами. Последние через приводной рычаг передают движение валу выключателя. В конце хода сердечника, когда выключатель включился, защелка заскакивает под ролик и удерживает механизм во включенном положении.

В конце включения сигнальные вспомогательные контакты разрывают цепь электромагнита включения и сердечник падает вниз.

При. отключении ток подается в электромагнит отключения, его боек ударяет в рычаг механизма свободного расцепления, благодаря чех\гу «ломаются» рычаги механизма свободного расцепления и ролик соскакивает с защелки. Ват выключателя под действием отключающей пружины поворачивается против часовой стрелки — происходит отключение.

Электромагниты включения и отключения получают питание от аккумуляторной батареи через сборку зажимов.

Ток, потребляемый электромагнитом включения привода ПЭ-11, составляет 58 А, электромагнитом отключения — 1,25 А при напряжении 220 В.

В приводе имеется рычаг ручного отключения.

Привод ПЭ-11 применяется для выключателей ВМП-10, ВМГ-10.

Для более мощных выключателей внутренней установки применяются электромагнитные приводы ГТЭ-2, ПЭ-21, ПС-31, а для наружной установки — ШПЭ-44, ШПЭ-38, ШПЭ-46 и др.

Достоинствами электромагнитных привод» являются простота конструкции и надежность работы в условиях сурового климата.

Недостатки — большой потребляемый ток и вследствие этого необходимость мощной аккумуляторной батареи (для включения выключателя МГГ-10-3200 требуется ток 155 А, а выключателя У-220-40 — 500 А при напряжении 220 В), а также значительное время включения (до 1 с).

Пневматический привод обеспечивает быстрое включение выключателя за счет энергии сжатого воздуха. Кинематическая схема его подобна электромагнитному приводу, но вместо электромагнита применяется пневматический цилиндр с поршнем (рис. 4.50).

Рис. 4.50. Привод пневматический ПВ-30:

1 — пневматический цилиндр; 2 — фланец воздухопровода; 3 — шток демпфера; 4 — поршень; 5 — шток; 6 — удерживающая защелка; 7 — подъемный ролик; 8— электромагнит отключения; 9 — система рычагов свободного расцепления; 10 — корпус привода; 11 — домкрат для ручного отключения; 12 — указатель положения

При включении выключателя открывается клапан, подающий сжатый воздух из резервуара в пневматический цилиндр 1. Поршень 4 со штоком 5 поднимается вверх и, воздействуя на подвижный ролик и систему рычагов, производит включение выключателя. Пружина над поршнем при этом сжимается, сглаживая удар при включении.

При отключении подается импульс на электромагнит отключения 8, который воздействует на механизм свободного расщепления 9.

Сжатый воздух (2 МПа) подается от общей компрессорной установки, обслуживающей воздушные выключатели, или на каждом приводе устанавливаются баллоны со сжатым воздухом, обеспечивающие пять-шесть операций без подкачки воздуха. Для подкачки воздуха используются небольшие компрессоры с электродвигателем мощностью до 1 кВт.

Пневматические приводы ПВ-30 применяются для выключателей МГ-10, МГ-20. Баковые выключатели серии «Урал» снабжаются пневматическими приводами ШПВ. Пневматические приводы не требуют установки мощной аккумуляторной батареи, так как ток, потребляемый электромагнитным клапаном включения, не превышает нескольких ампер. Сечение проводов от схемы дистанционного управления к приводу значительно меньше, чем при электромагнитном приводе.

В воздушных выключателях пневматический привод является органической частью самого выключателя.

Дальнейшим усовершенствованием пневматических приводов являются пне в мо гидравлические приводы, в которых движение подвижной системе выключателя передается от гидроцилиндра с поршнем. Поршень приводится в движение сжатой жидкостью, обычно маслом. Высокое давление жидкости (12 МПа) создается в аккумуляторе энергии привода за счет сжатого газа.

Рис. 4.51. Структурная схема управления сверхбыстродействующим выключателем: 1 — сигнал на отключение; 2 — источник световых импульсов; 3 — световод; 4 — фотодетектор; 5 — электромагнитный расцепитель; 6 — контакты выключателя; 7 — зарядное устройство

Для выключателей сверхвысоких напряжений особое значение имеет быстрота передачи отключающего импульса от привода к размыкающимся контактам. В этом случае применяются пневмомеханические устройства, в которых перемещение контактов осуществляется системой тяг и сжатым воздухом.

Для дальнейшего повышения быстродействия сигнал управления с потенциала земли может быть передан на высокий потенциал по световодам (рис. 4.51). Размыкание контактов происходит с помощью электромагнитного расцепителя, приводимого в действие разрядом конденсатора. Конденсатор заряжается от линии высокого напряжения через насыщающийся трансформатор.

Дата добавления: 2015-10-19 ; просмотров: 9774 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Приводы к выключателям высокого напряжения — Классификация приводов

Содержание материала

Глава первая
КЛАССИФИКАЦИЯ ПРИВОДОВ К ВЫКЛЮЧАТЕЛЯМ ВЫСОКОГО НАПРЯЖЕНИЯ
Приводом к выключателю высокого напряжения называется отдельный или встроенный в выключатель механизм, предназначенный для включения выключателя, удержания его во включенном положении и для отключения или освобождения его при отключении. Конструкция и параметры привода к выключателю высокого напряжения прежде всего зависят от размеров и конструкции самого выключателя, места его установки и условий работы.
В настоящее время существует большое количество различных типов приводов. Основное требование, предъявляемое к приводу, состоит в том, что каждый привод должен развивать мощность, достаточную для включения выключателя. Мощность привода должна быть такой, чтобы привод мог включить выключатель даже на существующее короткое замыкание в сети. Привод должен быть быстродействующим, т. е. производить включение выключателя за весьма малый промежуток времени.
При включении выключателя работа привода в основном расходуется на:

  1. преодоление сил тяжести подвижных частей выключателя и привода;
  2. преодоление деформации отключающих и контактных пружин;
  3. преодоление трения в механизме выключателя и привода;
  4. сообщение подвижным частям выключателя необходимой кинетической энергии для создания нужной скорости включения.

Если обозначить через А работу включения, через t время включения, то мощность привода можно определить по формуле Р= A/t. Так как время t изменяется незначительно и его величина составляет доли секунды, то при увеличении работы включения выключателя А потребуется увеличение мощности Р. Все современные приводы по способу питания их энергией можно подразделить на приводы прямого действия и приводы косвенного действия.

Приводы прямого действия — это такие приводы, у которых энергия, идущая на операцию включения выключателя, сообщается приводу только во время совершения процесса включения. Таким образом, длительность работы привода равна времени включения выключателя. Следовательно, четкое и быстрое включение при таком образе действия можно осуществить только за счет увеличения мощности привода. К приводам прямого действия относятся: а) ручные приводы прямого действия с использованием мускульной силы человека;
б) электромагнитные или соленоидные приводы постоянного и переменного тока; в) электродвигательные приводы.

Приводы косвенного действия — это такие приводы, у которых энергия, необходимая для включения выключателя, предварительно запасается в приводе.
К таким приводам относятся:
а) пружинные приводы, у которых энергия запасается в заведенных пружинах;
б) грузовые приводы, у которых энергия запасается за счет поднятого груза; груз может быть поднят на некоторую высоту посредством мускульной силы человека или электрическим двигателем через редукционную передачу;
в) пневматические приводы, у которых энергия запасается в сжатом воздухе (газе);
г) гидравлические приводы, у которых энергия аккумулируется в жидкости (сосуд с жидкостью находится под большим давлением), и т. п.
Основное отличие приводов косвенного действия от приводов прямого действия заключается в том, что приводы косвенного действия требуют большого запаса энергии, так как работа включения выключателя должна совершаться запасенной энергией и эта энергия не должна значительно снижаться во всем процессе включения выключателя. Работа, необходимая для накопления достаточного количества энергии, производится
в течение сравнительно большого промежутка времени, поэтому мощность двигателей таких приводов даже для крупных выключателей мелеет быть небольшой (порядка 0,1—2 квт).
Так как приводы прямого действия питаются от источников энергии только во время процесса включения выключателя, то потребляемая ими от источника энергии мощность должна быть во много раз больше, чем у приводов косвенного действия. Эта особенность приводов косвенного действия является основным и весьма существенным их преимуществом по сравнению с приводами прямого действия. Кроме того, приводы косвенного действия не требуют наличия постоянного тока, а следовательно, и дорогостоящих аккумуляторных батарей большой емкости. К недостаткам приводов косвенного действия следует отнести сложность конструкции и трудоемкость в производстве; приводы прямого действия являются более простыми по конструкции и дешевыми в изготовлении.
В тех случаях, когда выключатель отключил короткое замыкание и требуется немедленное автоматическое повторное включение его (АПВ), привод косвенного действия может не обеспечить такое включение.
Так как в приводе косвенного действия энергия, необходимая для включения выключателя, запасается предварительно, то может оказаться, что в данный момент запаса энергии в приводе недостаточно для производства АПВ, а накопление вновь нужного запаса энергии потребует длительного промежутка времени. Это может привести к вредным последствиям в работе энергосистемы. Отсюда следует, что за приводами косвенного действия требуются более тщательное наблюдение и уход, чем за приводами прямого действия. Кроме того, они требуют такого запаса энергии, который сможет обеспечить во всех случаях повторное включение выключателя. В настоящее время все приводы косвенного действия, выпускаемые отечественными заводами, имеют достаточный запас энергии для производства цикла однократного АПВ. Кроме того, все современные автоматические приводы прямого и косвенного действия имеют механизм свободного расцепления.
Наличие в приводе такого механизма позволяет производить отключение выключателя как от руки оператора, так и от отключающих электромагнитов. Механизм свободного расцепления привода выполнен так. что в процессе отключения он не дает валу выключателя увлечь за собой другие части привода (например, маховик, рукоятку, сердечник включающего электромагнита и др.). Приводы классифицируются также по конструктивной связи c выключателем. По этому признаку они подразделяются на: а) отдельные соединенные с выключателем непосредственно или через соединительные звенья и б) встроенные в выключатель. Наконец, по роду установки и условиям работы приводы подразделяются на: а) приводы для внутренней установки и б) приводы для наружной установки.
Самой ответственной функцией механизма привода является безотказное обеспечение отключения выключателя в нужный момент. Отключение может быть произведено либо вручную действием оператора, либо воздействием реле на отключающую катушку привода (при неисправной работе линии). Особо важно безотказное отключение выключателя в момент неисправной работы линии (короткое замыкание, длительная перегрузка, исчезновение напряжения и др.). При срабатывании соответствующего реле отключающий электромагнит приходит в действие и воздействует на защелку (механизм свободного расцепления), удерживающую выключатель во включенном положении.

Источник

Читайте также:  Модель ауди полный привод
Оцените статью
Авто Сервис